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ABSTRACT

The principles of optimal control of distributed parameter systems are used to derive a

powerful class of numerical methods for solutions of inverse problems, called data assimilation

(DA) methods. Using these DA methods one can efficiently estimate the state of a system

and its evolution. This information is very crucial for achieving more accurate long term

forecasts of complex systems, for instance, the atmosphere. DA methods achieve their goal of

optimal estimation via combination of all available information in the form of measurements

of the state of the system and a dynamical model which describes the evolution of the system.

In this dissertation work, we study the impact of new nonlinear numerical models on DA.

High resolution advection schemes have been developed and studied to model propagation

of flows involving sharp fronts and shocks. The impact of high resolution advection schemes

in the framework of inverse problem solution/ DA has been studied only in the context of

linear models. A detailed study of the impact of various slope limiters and the piecewise

parabolic method (PPM) on DA is the subject of this work. In 1-D we use a nonlinear

viscous Burgers equation and in 2-D a global nonlinear shallow water model has been used.

The results obtained show that using the various advection schemes consistently improves

variational data assimilation (VDA) in the strong constraint form, which does not include

model error. However, the cost functional included efficient and physically meaningful

construction of the background cost functional term, Jb using balance and diffusion equation

based correlation operators. This was then followed by an in-depth study of various

approaches to model the systematic component of model error in the framework of a weak

constraint VDA. Three simple forms, decreasing, invariant, and exponentially increasing in

x



time forms of evolution of model error were tested. The inclusion of model error provides

a substantial reduction in forecasting errors, in particular the exponentially increasing form

in conjunction with the piecewise parabolic high resolution advection scheme was found to

provide the best results.

Results obtained in this work can be used to formulate sophisticated forms of model

errors, and could lead to implementation of new VDA methods using numerical weather

prediction models which involve high resolution advection schemes such as the van Leer

slope limiters and the PPM.
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CHAPTER 1

INTRODUCTION

The potential benefits of more accurate long term forecasts (of atmosphere and oceans) are

obvious, particularly in the event of severe weather scenarios, such as hurricanes, tornadoes,

etc. Hence the need to better understand and improve various steps involved in weather

forecasting.

The evolution of the atmosphere is governed by physical laws of motion and conservation

of energy. These laws when expressed by a series of differential equations (usually partial

differential equations, or PDEs) give rise to the so-called numerical weather prediction (NWP)

models. Present weather forecasting system primarily utilizes NWP models and meteorological

data collected (temperature, wind velocity, pressure, humidity, etc.) from various sources

(land stations, balloons, buoys, ships, aircrafts, satellites, radiosondes, rawinsondes, etc).

The NWP models solve an initial value problem, i.e., if we know the initial condition of the

atmosphere, using the NWP model, we computationally solve the equations for a later time and

obtain new values of the variables used to represent the state of the atmosphere. Therefore

a good quality forecast requires that these NWP models represent accurately the dynamics

of the atmosphere (including the oceans) and the initial conditions supplied for integration

be known accurately. Efficient estimation of the current state of the atmosphere and its

evolution using the information provided by NWP model prediction and observations is carried

out by data assimilation (DA) [1]. Due to our lack of understanding of various complicated

processes and their interaction, the formulation of the NWP models involves parameterization

of various chemical, biological and physiological processes. DA also provides us the framework

to optimally estimate those parameters used in modeling of such complex processes.

A DA system consists of three important components: a set of observations or measure-

ments, a dynamical forecast model (or, the NWP model) and a methodology to meld the
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observations with the model, i.e., the data assimilation scheme itself. It is essential to

remember that both the observations and the models have errors. The observational errors

consist of instrumental noise, sampling errors, environmental noise, and any possible errors

involved in the interpretation of sensor measurements. Regarding models, since no model

can ever replicate the actual evolution of nature, all the dynamical models are imperfect;

with errors due to approximation of the physics (and, or biology or chemistry) at various

length and time scales, due to the discretization of continuous dynamical equations to arrive

at the numerical model, etc. Therefore the DA scheme must take into account these errors,

and it should not introduce any new errors. Ideally the DA output must be more reliable

in terms of quality of the information, when compared to the quality of the information

provided by the observations and models.

DA methods considered thus-far are based on either estimation theory (sequential methods

such as Kalman, extended Kalman, ensemble Kalman filtering methods) or variational

methods (3D-Var, PSAS, 4D-Var) which are based on minimization of a cost functional which

measures the distance (in a suitable norm) between observations and NWP model forecasts.

Estimation theory comprises of methods to estimate the state of a system by combination

(using a statistical approach) of all the available reliable information of the system from

measurements and dynamical models. The so-called Kalman filter (KF), derived by Kalman

and Bucy in 1960-1961 [2, 3] provided the path-breaking estimation or filtering algorithm

that is now used extensively in a wide range of signal processing areas, such as, navigational

and control systems. There are two well known estimation procedures: the filtering and

the smoothing processes. If the past and presently available information is used to estimate

the current state or predict the state of the system, the procedure is called filtering process.

Whereas if we were to estimate the state of the system in past time, using all the currently

available information, then the methodology is called smoothing (or interpolation) process.

For linear dynamical systems, the KF has been proved to provide a sequential, unbiased,

minimum error variance estimate of the state of the system using a linear combination of all

available past measurements and dynamics. One of the first applications of the KF theory

to arrive at a sequential DA scheme was provided by Ghil et al. (1981) [4]. They used a

linearized 1-D shallow water model as a surrogate to the complex NWP models, extension

to 2-D was accomplished by Todling and Ghil (1992) [5]. For an in-depth development of

various statistical, sequential estimation methods, please see [6], the extensions of the KF

2



theory to nonlinear dynamical systems using the extended KF (EKF) and ensemble KF

(EnKF) are reviewed in [7, 1] and references therein.

Now we turn our attention to the other class of DA methods, which are variational

in nature, called variational data assimilation (VDA) methods; which in the context of

evolution of the atmosphere is the subject of this dissertation (for oceanic DA, please see

Wunsch, 1996[8], Yu and O’Brien, 1995[9] and references there-in). The objective of VDA is

to determine a model trajectory (by adjusting initial conditions used for model integration)

that satisfies the model equations as a (strong or weak) constraint while simultaneously

minimizing the lack of fit between model predictions and heterogeneous observations in a

least-squares sense. Please see Navon et al. (1992)[10], Ledimet and Talagrand (1986)[11]

and Lorenc (1986)[12] for further details. In general, fusion of models with measurements

(observations) and finding response of a system to (external) disturbances requires solution

of inverse problems, by deriving an optimality criteria which involves formulation of a cost

functional, derivation of a system of linearized dynamical equations, and an adjoint system of

equations. VDA is just a particular case from a variety of methods to solve inverse problems,

which is based on optimal control theory. Other examples of inverse problems include those

in aerodynamics, such as minimization of drag, maximization of lift (as target functionals)

which are often performed by considering the geometry of the immersed body in the fluid as

the control variable, called shape optimization [13], for other applications and details, see [14].

Solutions of inverse problems typically involve minimization of a goal functional, using large

scale minimization algorithms. These methods often require availability of gradient of the

cost functional with respect to the control variables, which is efficiently by adjoint methods

(which are integrated backwards in time), see seminar work by Cacuci [15, 16, 17, 18].

Chapter 2 provides a brief introduction to various VDA methods and their mathematical

formulation, the derivation of tangent linear and adjoint models is presented and finally a

brief summary of the optimization algorithms used in VDA is provided.

During the course of the past few decades a significant improvement in NWP models

has been achieved. There have been many reasons for this progress, the most important

contributions have are due to increased understanding of the physical and natural process

involved, advances in numerical approximation methods, faster, more accurate and larger

storage computational resources [1]. Also a significantly larger number of observations are

increasingly becoming available from various sources, and from locations previously not

3



covered. However the usage of these more sophisticated numerical models and larger and

better quality observations in DA system is not readily accomplished, in the sense that there

is always a lag in time for the latest NWP model and observations to be used for DA. This

could be due to the fact that a significant amount of resources in terms of human resources

and time are required to update the DA scheme (for e.g., derivation of new adjoint model

that is compatible with the new NWP model); also simultaneously we need to improve the

DA methodology so that it is able to provide better quality estimates than that possible

previously, hence there are two possible paths to improvement in the field of DA. One of

them is to consider various challenges involved in the implementation of newer numerical

models in a DA system and we embarked on such a mission in chapter 3. There we concentrate

on the issues of impact of different high order advection schemes for the discretization of

the advection term(s) in the framework of inverse problems and problems related to VDA.

We addressed these issues using two specific cases, a viscous Burgers equation model in one

space dimension and a global shallow water equations model in two space dimensions. The

second topic of improving DA schemes is investigated in the chapter 4.

NWP models are imperfect, since they are discretized, dissipative and dispersion errors

arise, and, moreover subgrid processes are not included. In addition, most of the physical

processes and their interactions in the atmosphere are parametrized, also a complete

mathematical modeling of the boundary conditions and forcing terms can never be achieved.

Usually all of these modeling drawbacks are collectively addressed by the term, model error

(ME). Motivated by the results achieved in chapter 3, we attempted to improve the quality

of the solutions obtained via VDA, by incorporation of modeling errors using various high

resolution advection schemes presented in chapter 3. When the ME is included in VDA, it

is usually called weak constraint VDA and the formulation of such a methodology requires a

reformulation of the numerical model, the cost functional and the adjoint model; details of

such are available in chapter 4.

Finally in chapter 5 we summarize the results presented, their scope and significance in

the light of development of DA techniques is discussed. Also a brief summary of the current

and future work is provided.
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CHAPTER 2

VARIATIONAL DATA ASSIMILATION METHODS

Data assimilation (DA) denotes a class of numerical methods which are derived from principles

of optimal control of distributed parameter systems. These methods provide us tangible

means for estimating the state of a system via combination of information obtained from

observational data and a numerical model. Such an estimate of the state can be used for

forecasting the system for longer time interval with more accuracy and reliability. The

observational data is obtained from heterogeneous measurements of the state of the system

under investigation. The other principal ingredient for DA is the numerical model, which is

used to forecast the state of the system at a future time, if the present state is supplied

as input. Observational data is independent of the information obtained from usage of

numerical models. Using mathematical control theory, variational methods are used to

reformulate the DA problem as an optimization problem. In this chapter, we provide details

on the various ingredients required for DA, a brief summary of the different DA methods

(variational methods are described in more detail, than the non-variational algorithms), the

tangent linear and adjoint models are introduced, and finally a class of nonlinear optimization

methods are discussed.

2.1 Mathematical description of the various
ingredients for DA

2.1.1 State vector

All the independent variables that are used to identify the state of the system at any point in

time are collectively called as the state vector, denoted by x. If we are studying the evolution

of the entire atmosphere, the state vector would comprise of at-least five variables: surface

pressure, ps, temperature, T, moisture, q, and the components of wind along the longitudinal

5



direction, u, and along the latitudes, v. Usually atmospheric studies are conducted using a

discrete representation of the spherical earth. If the discretization consists of nλ grid points

along the longitude (λ), nθ grid points along the latitude and say, 50 vertical levels (on the

sphere), then the total number of variables is equal to N = 5 × nλ × nθ × 50. Usually

all the variables are ordered by grid point and by the variable, forming a single vector of

length N. Thus the state vector, x is of dimension N × 1. To provide an illustration of the

huge size of the system, if we were to consider a 1o × 1o discretization of the sphere, i.e,

nλ = 360 grid points along the longitude and nθ = 180 grid points along the latitude, then

N = 16.2 × 106.

2.1.2 The model

Discrete, computer-based numerical weather prediction (NWP) models are used for evolving

the state of an atmospheric, oceanic, or coupled system from time tk to time tk+1,

symbolically,

x(tk+1) = M[x(tk)] + η(tk). (2.1)

The model’ s dynamics are represented in the above equation using the (discrete) operator,

M and η(tk) accounts for the model error at time tk. Due to our inability to analytically solve

the coupled system of PDEs that are used to model the evolution of the system, NWP models are

usually obtained after discretization using numerical methods such as finite difference, finite

volume, finite elements or spectral methods of the full partial differential equations (PDEs)

that are assumed to govern the flow of the atmosphere (see [19] for a description of various

discretization methods used in the operational NWP models). These computer simulations

or prediction models take into account all the available statistical, dynamical and physical

knowledge of the atmosphere (as resolved at the level of discretization). Thus these nonlinear

models provide only an approximation of the true evolution of the atmosphere, since the true

evolution of the system may differ from (2.1) by unknown random and, or systematic errors.

By comparing model forecasts and the true evolution of the atmosphere over a period of time,

different approaches have been used to model the model error η(tk). The mean of the model

error is denoted by E{ηk}, where E{·} denotes the mathematical expectation operator and

the covariance of the model error at tk is denoted by Qk = E{ηkη
T
k }. If the numerical grid

comprises of N grid points then the discrete state vector, x and model error vector, η are

6



of length N. The expectation or mean of the model error at any time step, tk is given by

E{η} = [E{η1}, E{η2}, . . . , E{ηN}]T . The model error covariance is given by the following

N × N matrix,

Q =


E{η1η1} E{η1η2} . . . . . . . . . E{η1ηN}
E{η2η1} . . . . . . . . . . . . E{η2ηN}

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
E{ηNη1} . . . . . . . . . . . . E{ηNηN}

 .

Further details and investigation of the various forms of model error are provided in

Chapter 4. As evident from the above equation (2.1), NWP models solve an initial value

problem, given an estimate of the present state of the atmosphere, say x(t0), then the model

can be used to forecast the state x(tn), for any future time tn.

2.1.3 Observations

Measurements provide another valuable source of information regarding the state of the

system, called observations and are collectively denoted by yo. Due to the complex and

dynamic nature of the atmosphere (and oceans), observations can be broadly classified into

two types: direct or “conventional” and indirect or “unconventional”. Direct observations

consist of wind, temperature, and humidity measurements. Weather stations that based on

land at different locations, balloons, buoys, ships, aircrafts, radiosondes, rawinsondes, etc

provide us direct observations. Indirect observations consist of measurements obtained from

various satellites, which measure radiances, various types of imagery (visible, infrared, and

water vapor images), which do not explicitly enter in the state vector representation, but are

functionals of the state vector. Therefore indirect observations can be used only if we know

how to evaluate the functional form. Due to the heterogeneous and non-uniformly distributed

(in both space and time) nature of observations, the so-called nonlinear observation operator,

H is introduced; it is a mapping in both space and time. Observational data is rarely

available on a regular grid, usually the locations at which the observations are available

differ from the grid point locations on which the estimated field is sought. Therefore all the

observations, irrespective of the location where and when they were measured must be present

at the NWP model time steps, and grid points, this task is accomplished by the observational

operator. In the case of direct observations, H is a linear mapping of observations collected
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at various irregularly spaced locations to a regularly spaced numerical model grid. Whereas

for indirect observations, H is a complex operator, and usually leads to inverse problems. For

example, most of the satellite data is a non-linear integral measurement of the temperature

or humidity present in the atmosphere, therefore to obtain the temperature profile, one has

to solve an inverse radiative transfer problem where the input is the radiance measured by

the satellite.

There are errors associated with the observations, a primary sources of such errors is

instrumentation error, which usually has a constant mean and quantifiable variance. Another

source of error is through the numerical operations involved in the observation operator. If

the observations yo at time tk are defined by

yo
k = Hk[x

t(tk)] + εo(tk), (2.2)

where xt is the true state of the atmosphere and εo represents errors in the observations. In

the above equation, we assumed that the observational errors are additive in nature. The

observational errors are assumed to be uncorrelated with the model errors, i.e,

E{ηkεo
T
k } = E{εokη

T
k } = 0,

and the observational error covariance is denoted by Rk = E{εokεo
T
k }.

In general, observations are sparse, at least when compared to the density of the

discretized grid of the NWP model on which the state vector is defined. If the dimension

of the state vector is N × 1, and the dimension of the observations vector, yo is p × 1,

then typically, p � N, p is smaller than N by about one or two orders of magnitude. This

lack of information is addressed by introducing the background information, explained in

the following section.

2.1.4 Background field

The background field or first guess is an a-priori estimate of the state of the atmosphere

(denoted by xb) at all the numerical model grid points is used to supplement for the lack of

as many observations as the number of grid points. Ideally speaking, the background field

should be our best estimate of the state of the atmosphere before observations are available.

Usually a short-range forecast (typically 6 hours) is used to generate xb. The errors in the

background field are quantified by εb = xb−xt, and the background error covariance matrix,
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B is given by E{εbkεb
T
k }. Further details regarding the role played by the background field

in VDA and its formulation are provided in Chapter 4.

2.2 Brief summary of various DA methods

One of the first significant DA algorithm that was implemented was a simple and econom-

ical method, which was based on an empirical approach called the successive correc-

tions method (SCM), introduced by Bergthorsson and Doos (1955) [20] and Cressman

(1959) [21]. It belongs to a general class of methods called objective analysis (see [22]

for more details). Objective analysis is a process of interpolating data from irregularly

spaced locations (such as the collected observations) to a fixed grid. SCM is an iterative

procedure to estimate the value of a variable (which belongs to a field) on a regular grid,

using the background value of the field as the initial value at the zero-th iteration. In the

following iterations, value of the variable is computed by successively correcting, using the

observational field. If zk
i denotes the value of a variable at the ith grid point and kth iteration,

then the iterative procedure of SCM can be summarized as,

z0
i = zb

i , (2.3)

zk+1
i = zk

i +

∑N
j=1 wij(z

O
j − zk

j )∑N
j=1 wij + α2

, (2.4)

where zb
i is the background value of the field, z at the ith grid point, zO

j is the jth observation

surrounding the ith grid point, zk
j is the kth iterated value of the field estimate evaluated at

the jth observation point (calculated by interpolation from surrounding grid points), α2 is

an estimate of the ratio of the observational to background error variance. The weights wij

are used to quantify the influence of the observed value on the estimated field, as function

of the distance (in a suitable norm) between the location of the observation and the ith grid

point. Following forms of weights have been used in literature,

wij =

{
R2−r2

ij

R2+r2
ij
, if r2

ij 6 R2

0, otherwise,

wij =

{
e−r2

ij/2R2

, if r2
ij 6 R2

0, otherwise,
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where rij is the euclidean distance between a jth observation point and ith grid point, R is

the radius of influence (of any observation), which is allowed to vary from one iteration to

another, and its value could range from 300 Km to 1500 Km based on the location of field

being estimated (larger values for higher altitudes and lower range of values for fields near

the surface of the earth).

Nudging is another empirical method used for DA of small-scale observations, and is

not generally used for large-scale assimilation. It is based on a simple idea of nudging,

or dynamically relaxing the solution of the numerical model towards the observations

(interpolated to the model grid) by adding a suitable forcing term to the governing differential

equations. For e.g., if the following differential equation describes the evolution a variable,

p in time,
∂p

∂t
= g(p, q, t),

where g(.) describes the dynamics of evolution of p. Using the method of nudging model

predicted values of p to the observed values pobs, we modify the above equation by adding a

forcing term to the right hand side,

∂p

∂t
= g(p, q, t) +

pobs − p

τp

, (2.5)

where τp is tuned based on empirical (and, or heuristic) considerations and may depend on

the particular physical variable under consideration. If τp (which is also called relaxation

time scale) is chosen to be very small then the solution converges to the observations very

quickly, and the model dynamics do not have enough time to adjust. Whereas if τp is too

large, errors in the model could grow before nudging becomes effective; optimal methods

to estimate τp using parameter estimation have been studied by Zou et al. (1992) [23] and

Vidard et al. (2003) [24].

Both SCM and nudging are DA methods that use the availability of observations,

background field and numerical model to estimate the state of the atmosphere. Though

all the available information is being used, both of these methods do not guarantee that

the estimate is “optimal”, also, they do not take into account the errors associated with

these fields (such as the observation, background and model error covariances). Optimal

interpolation (OI) was one of the first operationally implemented method which was

formulated for optimally estimating the state of the atmosphere, other variational methods
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such as 3D-Var and physical space analysis scheme (PSAS) also provide other approaches

towards the same goal. Note all these three methods account for only the spatial distribution

of observations, and neglect their temporal distribution (for e.g., 3D-Var denotes variational

data assimilation of three dimensional fields). Using a weighted linear combination of the

background information and observations, we can write the following expression for an

estimate of the state,

x = Wb x
b + Wo yo, (2.6)

where Wb and Wo are the weighting matrices assigned to the background and observational

vector fields respectively. Another way to write the above linear combination is,

x = xb + W (yo −H[xb]), (2.7)

where the observational operator H has been used to interpolate the background field on

the model grid to the locations of the observations.

2.2.1 Optimal interpolation

For the estimate of the state given by the above equation (2.7) to be optimal in some sense,

the weighting matrix, W must satisfy certain property. In other words, we seek a W such

that the estimate, x∗, among all possible x is optimal according to some criteria. An obvious

optimality criteria is that x∗ should minimize the estimation error with respect to the true

state of the atmosphere. We will define the estimation error with respect to the true state

xt as,

εa = x− xt. (2.8)

Then minimization of the error covariance, P = E{εaε
T
a } provides us the optimal x∗. Let us

consider the following residue,

yo −H[xb],

we can rewrite the second expression as, H[xb] = H[xb−xt +xt] = H[xt]+H[xb−xt], where

H is obtained by linearization of H, H = ∂H
∂x

.

Recall that εb = xb − xt, and εo = yo −H[xt], therefore

yo −H[xb] = yo −H[xt]−H[xb − xt] = εo −Hεb.
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Using (2.7), (2.8) and the above relationship, the estimation error can be rewritten as,

εa = xb + W (yo −H[xb])− xt = (xb − xt) + W(εo −Hεb) = εb + W(εo −Hεb).

Therefore the error covariance, P = E{εaε
T
a } = E{[εb + W(εo −Hεb)][εb + W(εo −Hεb)]

T}
Using the definitions of the background and observational error covariances, and the

assumption that the observational error is not correlated with the background errors, we

obtain the following expression for P,

P = B + W[R + HBHT ]WT −WHB−BHTWT . (2.9)

If there exists a W that yields the least P, then the derivative, ∂P
∂W

must vanish, i.e,

W[R + HBHT ]−BHT = 0,

therefore the optimal W is given by,

W = BHT [R + HBHT ]−1. (2.10)

Note that using the above result, the error covariance matrix is given by,

P = B−BHT [R + HBHT ]−1HB, (2.11)

since both B and R are symmetric and positive definite, all the terms in the second expression

of the equation are also positive definite, therefore P 6 B, in other words, the uncertainty in

estimation of the optimal estimate x∗ decreases after every estimation step. To summarize,

in OI, the optimal estimate is given by (using (2.7) and (2.10)),

x∗ = xb + BHT [R + HBHT ]−1 (yo −H[xb]), (2.12)

and its error covariance is given by equation (2.11), see Eliassen (1954) [25], Gandin (1963) [26]

and Daley (1991) [27] for further details on OI.

2.2.2 Variational data assimilation methods: 3D-Var

The objective of variational data assimilation (VDA) methods is to identify an estimate of

the state that fits simultaneously the background field and the observations, given their

respective degree of uncertainty (or degree of confidence or precision), i.e, the inverses of
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their error covariances, B−1 and R−1 respectively. Such an estimate is obtained efficiently

by minimization of a least squares cost functional.

One of the approaches to derive the VDA methods is based on maximization of the a-priori

probability distribution (also called maximum likelihood approach, Edwards, 1984 [28]),

assuming Gaussian probability distribution. Given a background field (or a-priori estimate)

xb, the probability of finding the true state given this is, pB(x|xb), similarly, given the

observations, the probability is equal to pR(x|yo). Assuming a Gaussian distribution of the

background and observational errors the respective probabilities are given by,

pB(x|xb) =
1

(2π)n/2‖B‖1/2
e−1/2(x−xb)T B−1(x−xb), (2.13)

pR(x|yo) =
1

(2π)n/2‖R‖1/2
e−1/2(yo−H[x])T R−1(yo−H[x]), (2.14)

where ‖·‖ denotes the norm of a matrix (usually we consider the Frobenius norm). Since the

background and observational fields are two independent sources, the most likely estimate of

the state of the atmosphere is given by the joint probability of the above two probabilities,

i.e, the following product,

pB(x|xb) pR(x|yo) =
1

(2π)‖B‖1/2‖R‖1/2
e−[1/2(x−xb)T B−1(x−xb)+1/2(yo−H[x])T R−1(yo−H[x])].

Maximization of the above joint probability is the same as minimization of the following

quantity in the exponent (note the negative sign in the exponentiation),

1/2(x− xb)TB−1(x− xb) + 1/2(yo −H[x])TR−1(yo −H[x]).

The above functional represents a sum of least-squared difference between the state and the

background and observational fields, weighted by their respective inverse error covariances.

We will use the following notation to distinguish between the two different contributions,

the background cost functional is denoted by, J b, and the observational cost functional is

denoted by Jo, so that

J(x) = 1/2(x− xb)TB−1(x− xb)︸ ︷︷ ︸
Jb

+ 1/2(yo −H[x])TR−1(yo −H[x])︸ ︷︷ ︸
Jo

. (2.15)

In order to minimize the above quadratic cost functional, we would need its gradient and

Hessian with respect to the state vector, i.e., ∇xJ and ∂2J
∂x2 respectively. At the minima, x∗

of J(x), ∇xJ(x∗) = 0 and Hessian evaluated at x∗, ∂2J
∂x2 |x∗ is positive definite.
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Let H denote a linearization of the observational operator, such that H = ∂H
∂x

. Then

yo −H[x] = yo −H[xb + (x− xb)] = yo −H[xb]−H(x− xb).

Using the above relationship we can Jo as, Jo =

1/2(yo −H[xb]−H(x− xb))TR−1(yo −H[xb]−H(x− xb)) =

1/2(yo −H[xb])TR−1(yo −H[xb])− 1/2(yo −H[xb])TR−1H(x− xb)

− 1/2(H(x− xb))TR−1(yo −H[xb]) + 1/2(H(x− xb))TR−1H(x− xb).

The above cost functional is quadratic in (x− xb), and

∇xJ
o = −HTR−1(yo −H[xb]) + HTR−1H(x− xb).

Therefore

∇xJ = ∇xJ
b +∇xJ

o (2.16)

= B−1(x− xb) + HTR−1H(x− xb)−HTR−1(yo −H[xb])

= [B−1 + HTR−1H](x− xb)−HTR−1(yo −H[xb]).

For the minima, ∇xJ(x∗) = 0, which implies that

[B−1 + HTR−1H](x∗ − xb) = HTR−1(yo −H[xb]).

therefore,

x∗ = xb + [B−1 + HTR−1H]−1HTR−1(yo −H[xb]). (2.17)

Using the relationship for the gradient of the cost functional with respect to the state vector,

the Hessian is given by,
∂2J

∂x2
|x∗ = B−1 + HTR−1H. (2.18)

Since B and R are symmetric positive definite, the Hessian evaluated at x∗ is positive definite,

which implies that x∗ furnishes a minimum of the cost functional. Though the formal solution

of the 3D-Var estimation problem is given by equation (2.17), it is always obtained by direct

minimization of the cost functional J(x) using the adjoint model and large scale iterative

minimization methods (to be described in detail, late in this chapter); see Vandenberghe and

Kuo (1999) [29] for mesoscale model version 5 (MM5) 3D-Var implementation, Courtier et

al. (1998) [30] and Andersson et al. (1998) [31] and references therein for formulation and

implementation details of 3D-Var in a complex European center for medium-range-weather

forecast (ECMWF) system.
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2.2.3 Equivalence between OI and 3D-Var

Let us recall that the optimal estimate of the state using OI was given by equation (2.12),

x∗ = xb + BHT [R + HBHT ]−1 (yo −H[xb]),

and using 3D-Var formulation, the formal solution was given by (2.17),

x∗ = xb + [B−1 + HTR−1H]−1HTR−1(yo −H[xb]).

Though it is not obvious that both of these results are exactly the same, it has been proven

in literature that are indeed equivalent. To show that they are equivalent, it is enough to

prove that

[B−1 + HTR−1H]−1HTR−1 = BHT [R + HBHT ]−1.

For this purpose, we will use the following Sherman-Morrison-Woodbury (SMW) for-

mula [32], which states that for any invertible matrix, Λ and any matrices Γ, Θ,

[Λ + ΓΘ]−1 = Λ−1 − Λ−1Γ[I + ΘΛ−1Γ]−1ΘΛ−1.

In the SMW formula if Λ = B−1, Γ = HT , and Θ = R−1H, and assuming that H is unitary,

then

[B−1 + HTR−1H]−1 = B−BH(I + R−1HBHT )−1R−1HB.

Therefore [B−1 + HTR−1H]−1HTR−1

= [B−BH(I + R−1HBHT )−1R−1HB]HTR−1

= BHTR−1 −BHT [I + R−1HBHT ]−1R−1HBHTR−1

= BHT [R−1 − (I + R−1HBHT )−1R−1HBHTR−1]

= BHT [R−1−R−1H(I+BHTR−1H)−1BHTR−1]. Another application of the SMW formula

using Λ = R, Γ = H, and Θ = BHT , gives us

[R + HBHT ]−1 = R−1 −R−1H(I + BHTR−1H)−1BHTR−1.

Thus

[B−1 + HTR−1H]−1HTR−1 = BHT [R + HBHT ]−1,

which is the desired result. Also using the above results, note that the inverse of the 3D-

Var cost functional Hessian matrix is the same as the OI error covariance matrix in (2.11),
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[∂2J
∂x2 |x∗ ]−1

= [B−1 + HTR−1H]−1

= B−BH(I + R−1HBHT )−1R−1HB

= B−BH[R + HBHT ]−1HB

= P.

For other ways to derive the same result, please see Lorenc (1986) [12] and Courtier (1997) [33].

Thus the formal solution to the 3D-Var problem is the same as that obtained by using

OI. However as described earlier, the procedure followed to obtain the solution using

these two methods is very different. Practical implementation of OI requires a number

of approximations to be introduced, such as the background error covariance matrix, B

has to be locally approximated. All the available data through observations cannot be

used simultaneously. On the other hand, practical implementation of 3D-Var involves

minimization of a cost functional using large scale minimization methods (for computational

reasons, about 100 minimization iterations are usually performed, Courtier 1997 [34]) and

due to this reason many of the simplifying assumptions and approximations required by OI

are not needed any more. In particular the background error statistics can be effectively

used to obtain a better estimate of the state, and all the available observational data can be

used simultaneously; see Kalnay [1] for further discussion on this topic. Therefore 3D-Var

replaced OI as the operational scheme of choice at almost all the major weather forecasting

centers by the late 1990’s (during the 1980s to mid 1990s OI was being used).

2.2.4 Physical space analysis system (PSAS)

The PSAS is another VDA method which is closely related to both 3D-Var and OI, and was

introduced by Da Silva et al. (1995) [35]. Just as in the case of the 3D-Var method, the

optimal estimate of the state is obtained by minimization of a cost functional which is defined

in the (physical) space of the observations (whereas in 3D-Var the cost functional was defined

in the model state space, x). If the size of the observations vector, yo, is much smaller than

that of the state vector, x, then the dimension in which the minimization is carried out to

solve the PSAS problem is significantly smaller than that for the 3D-Var problem.

Let δx denote the increment to the background field, xb to obtain the optimal estimate

of the state vector, x, such that,

x = xb + δx,
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and let d denote the following residue in the observational space,

d = yo −Hxb,

where H is linear approximation of the observation operator in the vicinity of xb. In the

PSAS formulation, we formally minimize the following quadratic cost functional,

J(w) =
1

2
wT [R + HBHT ]︸ ︷︷ ︸

C

w−wTd, (2.19)

note that in the above equation, the cost functional is defined entirely in the observational

space (due to the action of H and HT , on B, C is also in the observational space). The

gradient of the above cost functional is given by

∇wJ(w) = [R + HBHT ]w− d.

At the minimum, the above gradient must vanish, i.e., ∇wJ(w) = 0. Which implies that

[R + HBHT ]w = d. (2.20)

In practice it is the above system of linear equations (2.20) that is solved (for example, using

preconditioned conjugate gradient method) to obtain w rather than direct minimization of

the cost functional given in equation (2.19). Once w has been obtained, the increment to

the background field, δx is given by,

δx = BHTw,

thus we obtain the estimate of the optimal state. For further details on PSAS and

its relationship to OI and 3D-Var please see Courtier (1997) [33], and for operational

implementation details, see da Silva and Guo (1996) [36] and Cohn et al. (1998) [37].

2.2.5 4D-Var

Four dimensional (three space dimensions plus time dimension) variational data assimilation,

or 4D-Var, can be considered as an extension to the 3D-Var method. All the important

DA methods considered thus-far (OI, 3D-Var and PSAS) neglected time as a dimension,

whereas 4D-Var allows for inclusion of the temporal dimension. In particular, observational

data can be considered as distributed within a time interval (t0, tn), which is indeed the
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case in reality. Thus, rather than having one observational vector, yo to represent all the

observations gathered within an interval of time, in 4D-Var, we have a sequence of temporally

distributed observations: yo(ti), ti ∈ (t0, tn). The time interval under consideration, (t0, tn)

is called the time window of data assimilation. Associated with each of these observations,

available at a certain time, ti, we have the observational error covariance, R(ti) = Ri

(therefore we could account for observational errors to evolve in time, this is an important

issue and is further discussed in Chapter 4).

The 4D-Var formulation provides an optimal estimate of the trajectory followed by

the true evolution of the atmosphere (or ocean) in a time interval, using the available

observations, yo(ti) and their respective error covariances, Ri, the background (or, first

guess) field, xb and the associated background error covariance, B, and the numerical

(forecast) model, symbolically represented by M. Recall from equation (2.1), the state at

ti+1 is obtained using the forecasting model and the state at the previous time step, ti,

x(ti+1) = M[x(ti)] + η(ti),

where M[.] represented the discrete model’ s dynamics operator and η(ti) represented the

model error at time step, ti. The following derivation of the 4D-Var method is provided

by neglecting the model error, in other words, assuming that the model is perfect. Such a

formulation of the 4D-Var is called strong constraint 4D-Var; issues related to accounting

for model error are very crucial to the subject of VDA, and these are addressed in detail, in

Chapter 4. A least-squares cost functional similar to that in equation (2.15) is minimized

(subject to the forecast model as a constraint) in 4D-Var, where the observations are

distributed in time,

J [x(t0)] = 1/2[x(t0)− xb]TB−1[x(t0)− xb]︸ ︷︷ ︸
Jb

+ 1/2
n∑

i=0

[H(x(ti))− yo(ti)]
TR−1

i [H(x(ti))− yo(ti)]︸ ︷︷ ︸
Jo

,

(2.21)

note that the second component of the cost functional, Jo, describes the sum of least-

squared differences between each of the observations and the output from the forecast model

(considered in the observational space) over the entire data assimilation time window: (t0, tn).

As in the 3D-Var cost functional, the background cost functional term, J b, measures the least-

squares distance between the background field and model initial state, x(t0). The relevance
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Figure 2.1: Illustration of 4D-Var in the phase plane. Using information from the previous
forecast (xb) and most recently available observations within a time interval, a new optimal
x∗ is obtained via 4D-Var so that the corrected forecast (new model trajectory) closely fits
the available and subsequent observations. Also see that neglecting the time dimension
reduces 4D-Var to 3D-Var.

of such a quadratic cost functional is shown in the fig. 2.1. The control variable, or the

the variable with respect to which the above cost functional is minimized is the initial state

of the model, x(t0), with in the data assimilation time window. Through minimization of

J [x(t0)], the goal of strong constraint 4D-Var is to obtain an optimal initial state x∗ (and

other model parameters), which when used as initial conditions for the forecast model, the

model output is able to fit not only the observations within (t0, tn), but also for time, t > tn,

i.e., forecast for longer periods of time with more reliability and accuracy. This procedure of

implementing 4D-Var within each data assimilation time window (which is typically 12- 24

hours long) is carried out cyclically at major weather forecasting centers [1, 38]; see flowchart

in appendix A).

In order to minimize the cost functional in (2.21) with respect to x(t0), we need to be

able to calculate the gradient of the cost functional with respect to the control variable,

i.e., ∇x(t0)J, and ensure that the Hessian of the cost functional, evaluated at the minimum is
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positive definite. Since the cost functional is convex by construction and the background and

observational error covariances, B and R are symmetric positive definite (by definition), the

Hessian of the cost functional is always positive definite (if there were to be discontinuities

in the state variables, then we would have to convexify such a 4D-Var cost functional),

for further details, please see [39] and references therein (here onwards, unless otherwise

specified, it is assumed that the observational error covariance matrices are fixed in time,

i.e., Ri = R).

The gradient of the 4D-Var cost functional with respect to the control variables is

efficiently provided by the adjoint model, following derivation details its mathematical

formulation (another approach to obtain the gradient will be described in Chapter 4). Let

us consider a first order variation of the above cost functional, by introducing a small change

δx(t0), in the control variable, x(t0),

δJ = J [x(t0) + δx(t0)]− J [x(t0)] ≈ [
∂J

∂x(t0)
]T δx(t0) = [∇x(t0)J ]T δx(t0),

where [∇x(t0)J ]T δx(t0) is the directional derivative of J in the direction of δx(t0). It is also

the Gâteaux derivative (note that in the finite-dimensional case, such as the one we have

here, the Fréchet derivative is equivalent to the gradient, whereas the Gâteaux derivative is

equivalent to the directional derivative [40]). The gradient, ∇x(t0)J is given by,

∇x(t0)J = ∇x(t0)J
b +∇x(t0)J

o, (2.22)

and gradient ∇x(t0)J
b is obtained trivially,

∇x(t0)J b = B−1(x(t0)− xb), (2.23)

whereas obtaining ∇x(t0)J
o is relatively involved, because model state at time, ti is obtained

by integrating the forecast model from initial time to ti,

x(ti) = M(t0, ti)[x(t0)],

and therefore Jo implicitly depends on x(t0). However, using the chain rule, for a functional

K = 1
2
aDa, where the vector a is dependent on the vector, b, via a = a(b), the gradient of

K with respect to b is given by,

∇bK = [
∂a

∂b
]T (Da).
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In the case of the observational cost functional, Jo, b = x(t0), D = R−1, and a =

[H(x(ti))− yo(ti)]. Therefore we first set out to find

∂a

∂b
=

∂[H(x(ti))− yo(ti)]

∂x(t0)
.

Once again, let us consider a small perturbation δx(t0), of the initial state, x(t0). Then

x′(ti) = M(t0, ti)[x(t0) + δx(t0)],

which can be expanded to yield, x′(ti)

= M(t0, ti)[x(t0) + δx(t0)]

= M(t0, ti)[x(t0)] + [ ∂M
∂x(t0)

(t0, ti)]δx(t0) + O[δx(t0)
T δx(t0)]

= x(ti) + [ ∂M
∂x(t0)

(t0, ti)]δx(t0) + O[δx(t0)
T δx(t0)].

If we consider an approximation up-to first order only and using the above result, we obtain,

δx(ti) = x′(ti)− x(ti) ≈ [
∂M

∂x(t0)
(t0, ti)]δx(t0).

Therefore we have obtained an equation to describe the evolution of the perturbed state, δx

from t0 to final time, tn. The linearized operator: ∂M
∂x(t0)

is denoted by L and is called the

tangent linear model (TLM). When the TLM is integrated from t0 → tn using δx(t0), as

initial condition, yields, δx(tn),

δx(tn) = L(t0, tn)[δx(t0)]. (2.24)

The TLM is also the Jacobian of the nonlinear model with respect to the initial conditions,

therefore it can be utilized to study the evolution of uncertainties in the initial state, x(t0).

Therefore we obtain the following result,

δx(tn) =
∂x(tn)

∂x(t0)
.

Computationally it is obtained by linearization of every nonlinear statement (or every

segment of the programmed code) in the nonlinear (forecast) model, further details on the

TLM are provided in Chapter 3.

Using the above derived result and equation (2.24),

∂[H(x(ti))− yo(ti)]

∂x(t0)
=

∂H

∂x(ti)

∂x(ti)

∂x(t0)
=

∂H

∂x(ti)
L(t0, ti). (2.25)
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Let Hi be a linearization of the observations operator around the state, x(ti) (in other words,

let Hi be the linearized Jacobian, ∂H
∂x(ti)

) then

∂[H(x(ti))− yo(ti)]

∂x(t0)
= HiL(t0, ti).

Since the TLM, L, is a linear operator, we can write L(t0, ti) as a continuous product of a

series of linear operators, each operating from one time step to the next, i.e.,

L(t0, ti) = L(t0, t1)L(t1, t2) . . .L(ti−1, ti) =

j=i−1∏
j=0

L(tj, tj+1). (2.26)

Thus we now have all the ingredients needed to obtain the gradient of the observational cost,

Jo with respect to x(t0),

∇x(t0)J
o =

n∑
i=0

[
∂[H(x(ti))− yo(ti)]

∂x(t0)
]T R−1 [H(x(ti))− yo(ti)].

Using the above result and equations (2.25 and 2.26), we obtain

∇x(t0)J
o =

n∑
i=0

[Hi L(t0, ti)]
T R−1 [H(x(ti))− yo(ti)] (2.27)

=
n∑

i=0

[L(t0, ti)]
T HT

i R−1 [H(x(ti))− yo(ti)].

From (2.26), [L(t0, ti)]
T = [L(t0, t1)L(t1, t2) . . .L(ti−1, ti)]

T

= LT (ti−1, ti)L
T (ti−2, ti−1) . . .LT (t1, t2)L

T (t0, t1).

It is obvious from the above equation that we have a product of a sequence of linear operators,

which are transposes of their corresponding operators in the TLM. Also the time index in

the above continuous product is starting at the final time, ti and ending at the initial time,

t0. The above transposed operator, [L(t0, ti)]
T is the so-called adjoint model (ADM), and it

is computationally obtained by transposing each and every linear statement in the TLM,

written backwards in time (once again, please see Chapter 3 for further details). We can

rewrite the ADM as a sequence of product of linear operators, each of which is flowing

backwards in time,

[L(t0, ti)]
T = LT (ti, ti−1)L

T (ti−1, ti−2) . . .LT (t2, t1)L
T (t1, t0) =

0∏
j=i−1

LT (tj+1, tj) = LT (ti, t0).

(2.28)
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Thus

∇x(t0)J
o =

n∑
i=0

LT (ti, t0)H
T
i R−1 [H(x(ti))− yo(ti)], (2.29)

and

∇x(t0)J = ∇x(t0)J
b +∇x(t0)J

o = B−1(x(t0)− xb) +
n∑

i=0

LT (ti, t0)H
T
i R−1 [H(x(ti))− yo(ti)].

(2.30)

The above equation shows that in every iteration of 4D-Var cost functional (2.21) minimiza-

tion, we need to calculate the gradient (2.30), i.e., compute the increments [H(x(ti))−yo(ti)]

at the observation times, ti during a forward integration of the forecast model, operate

on them by HT
i R−1 and integrate these weighted increments backwards in time, to the

initial time, t0 using the ADM. Since many parts of the backward ADM integration are

common to several time intervals, various implementations of the above procedure (obtained

by rearranging the above equation) have been suggested in literature (such as the incremental

form of 4D-Var, cycling 4D-Var, also the method of representers), see [1, 34, 41, 42] and

references therein for further details on such methods. Therefore implementation of the

4D-Var algorithm involves a sequence of calls to a minimization algorithm, which uses the

functional and gradient information, and in an iterative mechanism, yields the optimum

value of x∗ = x(t0) which provides the least value of the cost functional, J(x∗).

Due to the complex nonlinear nature of the forecast models, the development of

the tangent linear and adjoint models is extremely complicated, time consuming and

laborious (these issues are elaborated in Chapter 3). A few automatic differentiation

(AD) tools are now available to help speed-up the task of generating the tangent linear

and adjoint models. Some of the popular AD softwares are: tangent linear and adjoint

model compiler (TAMC [43]), automatic differentiation of Fortran (ADIFOR [44]), Odyssée

and Tapenade [45] (we have used TAMC in our studies). Coupled with a suitable large

scale nonlinear minimization method, and using the background field as the first guess for

minimization, the method of 4D-var provides an optimal estimate of evolution of the true

atmosphere inside the time window of assimilation. In the next and final section of this

chapter, we will briefly introduce the main concepts of minimization methods.
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2.3 An overview of nonlinear minimization methods

Here we are interested in the following minimization problem,

min
x

f(x),

where x is the vector of control variables, f is the objective or cost functional, which we

desire to minimize with respect to the control variables. Some times we have equality

and, or inequality constraints imposed on all or a few components x. In that case,

we have a constrained minimization problem. Since in this dissertation work, we deal

with unconstrained minimization problems only, here onwards, unless otherwise specified,

there are no constraints on the control variables (only a comprehensive summary of the

minimization methods has been provided over here, for exhaustive details, please see Nocedal

and Wright (1999) [46], Nash and Sofer (1996) [47]).

If the functional f is linear in x, such as, f(x) = aTx + b, where a and b are two

constants, then the minimization method used to obtain the minimum of f is called a linear

optimization or linear minimization method, for example, the simplex method attempts

to minimize such linear functionals. On the other hand, here we will deal with nonlinear

functionals of the form, f(x) = 1
2
xT Ax + bT x + c, where A,b and c are constants. Such

an objective functional is convex (or, quadratic) in x. We will assume that the functional is

continuously differentiable all over the domain of x (usually, x ∈ Rn).

In order to be able to obtain the minimum of the above functional, we first need to

characterize nature of the minimum we are interested in finding.

Def.: Global Minimum

A point x∗ is a global minimizer, if f(x∗) 6 f(x), ∀x.

Not all functions (or functionals) have a finite global minimizer, and if even there exists

a global minimizer, there is no guarantee that we should be able to calculate it in a practical

manner, with the available computational resources in realistic time (particularly for the

complex functionals that we come across in real life applications). Hence it would be very

satisfying, at-least theoretically, and certainly for practical reasons too, if were able to find

global minimizers. However, many of the popular nonlinear optimization methods devised

thus-far are based on the Taylor series expansion, hence they are based on the information

about the functional, available at a single point and approximation of this information within

24



a small neighborhood of this point. Therefore using such methods it, without any additional

information or assumptions about the problem, it would not be possible to identify global

minimizers using such methods which are based on Taylor series expansions. Fortunately, by

construction, the 4D-Var cost functional in equation (2.21) was shown to be convex, hence

we should be able to find such global minimizers, still using a method based on Taylor series

approximations; in-fact for such a cost functional, the local minimizer is the same as the

global minimizer (as explained below). Following are some of the used formal definitions

and proof of the above statement.

Def.: Local Minimum

A point x∗ is a local minimizer if there is a neighborhood, S of x∗ such that f(x∗) 6 f(x), ∀S,

more precisely, ‖x− x∗‖ 6 ε.

The necessary and sufficient conditions for optimality are based on the assumption that

x∗ is a local minimizer of an objective functional.

Def.: First-order necessary condition

If x∗ is a local minimizer and f is continuously differentiable in an open neighborhood of x∗,

then ∇f(x∗) = 0.

Any local minimizer, x∗, must also be a stationary point, i.e., a point where the gradient

of the functional, ∇f(x∗) = 0.

Def.: Second-order criteria

For x∗ to be a local minimizer of f, assuming that∇2f is continuous in an open neighborhood

of x∗, it is necessary that ∇f(x∗) = 0 and ∇2f(x∗) be positive semi-definite; for sufficiency

we require ∇f(x∗) = 0 and ∇2f(x∗) be positive definite.

We will often be using the following form of Taylor series, in n-dimensions.

Taylor’ s theorem:

f(x0 + p) = f(x0) + pT∇f(x0) +
1

2
pT∇2f(x0)p + O(‖p‖3). (2.31)

Lemma 1:

When f is a convex function(al), any local minimizer x∗ is a global minimizer of f .

Proof : We will prove the above lemma by contradiction. Suppose x∗ be a local minimum

point, but not a global minimizer. Then we can find a point, z ∈ Rn, such that f(z) < f(x∗).
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Now let us consider a line segment that connects x∗ and z,

x = c1z + (1− c1)x
∗, for any c1 ∈ (0, 1].

Using the convexity property of the functional, f, we have,

f(x) 6 c1f(z) + (1− c1)f(x∗),

but it has already been assumed that f(z) < f(x∗) and c1 ∈ (0, 1]. Therefore

f(x) < f(x∗),

which is not possible because x∗ is already assumed to be the local minimizer, hence our

supposition is incorrect, and hence, x∗ is also the global minimum of the convex functional, f.

2.3.1 Basic components of large scale minimization algorithms

Following is a generic description of any implementation of an optimization algorithm.

Starting at an initial guess point, x0, optimization algorithms generate a sequence of iterates

{xi}i=IterMax
i=1 which terminate when either no more progress can be made or when it seems

that a solution point (either a local or global minimum) has been achieved with sufficient

accuracy (usually it is prescribed by the user, and is called termination criteria). One

iteration of the optimization algorithm, i.e., to move from xi to xi+1, involves usage of

information about the functional f at xi, also possibly the information accrued from previous

iterates: x0,x1, . . . ,xi−1. The goal being, as we move from one iteration to the next, the

functional is lower than the functional value in the previous iteration, i.e., f(xi+1) < f(xi).

Following is an algorithmic representation of the above description,

Start with a specified initial guess of the solution x0.

For i = 1, 2, . . . , IterMax,

If xi is optimal (according to some specified termination criteria), stop.

Determine an improved estimate of the solution: xi+1 = xi + αi pi, such that

f(xi+1) < f(xi).

Where pi is a direction of descent, i.e., a direction following along which the value of the

functional decreases and the scalar, αi is the step length, i.e., the amount of distance we

would like to go along the direction of descent to arrive at the new iterate, xi+1.
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Hence optimization methods provide us the framework to minimize an objective func-

tional to a prescribed satisfaction, in a tangible way. To achieve this goal, we need a recipe

to proceed from iteration to another, i.e., find αi and pi, check for termination criteria after

every iteration. First we will address the issue of finding the step length, which also called

line search. Because the optimization algorithm chooses a direction pi and searches along

this direction, from the current iterate xi for a new iterate with a lower functional value.

This process of finding αi can be cast into another problem of solving the following 1-D

minimization problem (moving along the direction of descent pi),

min
α>0

f(xi + αpi).

One can in principle solve the above equation exactly, but an exact minimization is expensive

an practically infeasible. Therefore most of the line search algorithms generate a limited

number of trial step lengths until it finds one that closely approximates the minimum of the

above one-dimensional minimization problem. At the new iteration point xi+1, a new search

direction and step length are computed (after checking for termination) and the process is

repeated until convergence criteria are satisfied.

2.3.2 Brief description of a few nonlinear minimization algorithms

One of the simplest approaches to obtain the direction of descent is based upon using the

gradient of the objective functional alone, such the steepest-descent method (because of its

simplicity, steepest descent method converges very slowly). Where pi = −∇fi, i.e., the

direction of descent at the i-th. iteration is simply equal to the negative gradient of the

objective functional at the i-th. iteration. Note that when pi is a downhill direction, the

angle θi between pi and ∇fi has a cos θi < 0, therefore

pT
i ∇fi = ‖pi‖ ‖∇fi‖ cos θi < 0,

which implies that for all positively but sufficiently small ε, f(xi + εpi) < f(xi), thus

guaranteeing decrease in f. In-fact the above criteria, pT
i ∇fi < 0, is a necessary condition

for any pi to be a descent direction.

Let us consider the following second-order Taylor series approximation to f(xi + p),

f(xi + p) ≈ f(xi) + pT ∇f(xi) +
1

2
pT ∇2f(xi)p,
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we can write the right hand side of the above equation as a function of p alone,

K(p) = f(xi) + pT ∇f(xi) +
1

2
pT ∇2f(xi)p.

Newton’ s method or simply, the Newton direction is obtained by requiring that the vector

p minimize the functional K(p), which is itself a second-order approximation of the original

objective functional in the neighborhood of xi. In order to minimize K(p), using the first

order necessary conditions alone, the gradient of ∇pK(p) = ∇f(xi) +∇2f(xi)p = 0, which

implies that

p = −[∇2f(xi)]
−1∇f(xi). (2.32)

It is easy to see that such a direction of descent does indeed guarantee descent (unless the

gradient, ∇f(xi) is equal to zero). In the vicinity of the minimum, Newton’ s method

is characterized by a fast rate of convergence, typically quadratic. However, the biggest

bottleneck involved in the practical implementation of Newton’ s method is the need

for the Hessian of the objective functional, or at-least the Hessian-vector product, whose

computation is usually extremely expensive, if not practically impossible.

Quasi-Newton (QN) methods alleviate such a need for the Hessian information by

constructing suitable approximations of the Hessian, using the gradient of the objective

functional available at successive iterates. One of such methods is the Broyden, Fletcher,

Goldfarb, Shanno (BFGS) method, which is described in Chapter 3. Another class of

methods called Newton-conjugate gradient (or Newton-CG), also called truncated Newton

(TN) methods are also based on the principal idea of Newton methods, equation (2.32). Just

like the QN methods, the TN methods also approximately solve the Newton equations by

solving it in the following way,

[∇2f(xi)]p ≈ −∇f(xi),

for p. The Hessian vector product, i.e., the left hand side of the above equation is obtained

by taking finite differences of two successive gradients, and the right hand side is just the

current gradient itself and finally, using a conjugate gradient method the above system of

linear equations is solved to obtain the search direction, pi.

Nonlinear conjugate gradient (CG) methods are another important class of minimization

methods that provide a suitable direction of descent [48] at the i.-th iteration,

pi = −∇f(xi) + γipi−1, (2.33)
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where γi is a scalar which ensures that the vectors, pi−1 and pi are conjugate. The property

of conjugacy of two vectors is defined as following. Any two non-zero vectors, a and b are

conjugate with respect to a symmetric positive definite matrix A, if

aT Ab = 0,∀ a 6= b.

If we denote the gradient of the objective functional at the i.-th iteration, −∇f(xi), by ri,

then in order to ensure that the vector pi given by equation (2.33) is conjugate to pi−1, we

calculate γi using

γi =
rT

i ri

rT
i−1 ri−1

.

This form of nonlinear CG method is known as the Fletcher-Reeves [49] CG method. In

another popular implementation, known as the Polak-Ribiére CG method [50], γi is obtained

as,

γi =
rT

i (ri − ri−1)

‖ri−1‖2
2

.

In the 4D-Var minimization applications we will consider in the following chapters, we will

be using a version of the BFGS quasi-Newton method called, the limited memory version of

the BFGS method. As detailed earlier, the adjoint method is used to compute the gradient

of the cost functional, which is in-turn supplied to the minimization algorithm to minimize

the 4D-Var objective functional.
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CHAPTER 3

IMPACT OF HIGH RESOLUTION ADVECTION

SCHEMES ON VDA

The numerical weather prediction (NWP) models are based on a set partial differential

equations (PDEs). Due to the complex nature of these PDEs, arising from nonlinearities,

boundary conditions, etc, NWP models are discretized (in space and time) and solved using

high speed digital computers. Spatial discretization methods for solving these PDEs can be

broadly classified as finite difference (FD) [51, 52], finite volume (FV) [53], finite element (FE)

[54, 55, 56] and spectral methods [57] (including the discontinuous Galerkin (DG) methods

[58]). All of these methods combined with explicit or implicit time integration schemes can

be effectively applied to solve PDEs (of various types such as hyperbolic, parabolic and

elliptic). All of these methods combined with explicit or implicit time integration schemes

can be effectively applied to solve PDEs (of various types such as hyperbolic, parabolic and

elliptic).

For numerical solutions of conservation laws, such the Euler equations in gas dynamics

[59] which describe evolution and propagation of flows involving sharp fronts and shocks,

several methods have been suggested in the FD, FV, FE, spectral and DG methods

literature. Some of the most popular methods in the FV context are Lax- Wendroff, Lax-

Friedrichs, Roe’ s, flux corrected transport (FCT) methods of Boris- Book and Zalesak, slope

limited methods of van Leer, piecewise parabolic method (PPM) of Colella and Woodward,

essentially non-oscillatory (ENO) schemes of Harten-Shu-Osher (see [53, 60, 61] for details

of these methods), to name a few. In the FD context, please refer [52], FE [56], spectral and

DG methods [57] and [58] respectively for details.

In atmospheric fluid dynamics problems, discontinuities usually do not develop from

smooth initial conditions; except in cases such as the formation of hydraulic jumps that
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evolve in the shallow-water flows from smooth initial data. For instance in mid- latitudes,

fronts can be formed in low- pressure systems, yet these fronts are not entirely discontinuities.

Atmospheric fronts (also substances such as chemical pollutants) are transported from one

location to another, described very well by a tracer advection model. Due to the deformation

(stretching and shearing) of the velocity field that advects the front, discontinuities can

be formed on the resolution scale of the (computational) model, see section 5.3 of [61]

for details. As a result of finiteness of clouds, variables such as moisture (density) and

temperature are discontinuous (once again, on the scale of the model resolution) across

the interface of the cloud [62]. Therefore, from a purely computational stand point, there

is a need to apply numerical schemes devised for numerical solutions of conservation laws

which support discontinuous solutions, in the geophysical fluid flows. Rood [63] provided a

detailed analysis and comparison of various advection schemes for a simple linear atmospheric

transport model. Lin et. al [64] have analysed the effect of varying the slope limiters using

an atmospheric general circulation model. Lin and Rood [65] have compared the first order

upwind, central difference, PPM (modified monotonic and positive definite) and monotonic

van Leer schemes [66]. Towards the development of a fully operational atmospheric general

circulation model based on FV discretization [67], Lin and Rood [68] have implemented slope

limited van Leer schemes and the PPM scheme on a shallow water equations model using a

semi-Lagrangian semi-implicit time integration scheme. For a discussion and applications of

other popular schemes such as MPDATA of Smolarkiewicz [69, 70] and QUICK of Leonard

[71, 72, 73], see [74]. MPDATA is also used in the hybrid coordinate ocean model (HYCOM)

[75] for advection. Several numerical schemes that are ENO and total variation diminishing

(TVD) type have been tested and compared using the rotational and deformational flow-

field test cases by Sokol [76]. Iskandarani et al. [77] provide a comparison of the continuous

Galerkin, discontinuous Galerkin, spectral finite volume (with a FCT limiter) and Taylor

Galerkin least square methods using a linear advection mathematical model.

The impact of different discretization techniques for the advection term(s) in the

framework of inverse problems and problems related to DA has not been extensively tested,

except for work by Vukićević et al. [74] and Thuburn and Haine [78]. In [74] the authors

performed DA experiments to reveal the relationships between their properties with respect to

data assimilation with three different (central difference: LEAPFROG, MPDATA, QUICK)

schemes for the advection of a passive tracer in two dimensions using a linear 2-D transport
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equation. Their results indicate that more accurate advection schemes need to be used to

solve both, forward and adjoint models in time to achieve higher accuracy regarding recovery

of initial conditions for data assimilation; also the same discretization scheme should be

applied consistently both for forward and adjoint model integrations. Thuburn and Haine [78]

recall Godunov’ s theorem (which states that any linear monotonic advection scheme cannot

provide more than first order accuracy), they studied the affects on adjoint sensitivity

computations using a nonlinear, nonoscillatory (QUICK) scheme on a one dimensional linear

advection equation model. They also suggest modifications to advection schemes to obtain

adjoint sensitivity results that are meaningful (in the particular physical setting considered

by them). In this context, a total variation diminishing (TVD) scheme based on a slope

limiter has been suggested.

In this chapter we study the impact of using FV methods that are slope limited using

van Leer type and PPM for spatial discretization (in 1-D and 2-D). In one dimension, a

nonlinear viscous Burgers equation model and in 2-D the spherical global shallow water

equations have been used as proxy for more complex NWP models. The solution of these

nonlinear PDEs has been achieved using FV discretization. We show that for a particular

smooth initial condition, we obtain a smooth solution for these model problems (in the

context of smoothness property of geophysical flows as discussed above), and implement the

adjoint method to conduct DA experiments. Finally the performance of the various slope

limited and PPM schemes for the minimization of a certain cost functional is presented in

the context of DA (in both 1-D and 2-D).

3.1 Description of the mathematical and numerical
models

The Burgers equation [79] will be used to present detailed formulation of the various slope

limiters and the PPM advection scheme in one space dimension. The formulation extends

readily to 2-D for the global shallow water equations model, which will be discussed later in

this section.

Let us consider the following 1-D (nonlinear) scalar conservation law (φ(x, t) ∈ C2), the

space of continuous functions that are at-least twice differentiable)

∂φ

∂t
+

∂f

∂x
=

∂S

∂x
, (3.1)
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where the f is a convex flux function given by φ2

2
and S represents the source term(s).

Equation (3.1) is the well known Burgers equation which is a very important fluid dynamical

model useful for conceptual understanding of nonlinear waves, shock formation [59, 80]

and turbulence [81]. Various numerical schemes (see Fletcher [82] for a detailed numerical

analysis) have been suggested and tested on this model equation to efficiently capture shocks.

We will now describe and test a variety of finite volume methods [53] to solve the above

equation, all differing in the way which we reconstruct the solution, φ, in each cell using

different slope limiters. We will closely follow the approach taken by Monotone Upstream-

centered Schemes for Conservation Laws (MUSCL), see [83, 84, 85, 66, 86].

Let us start by writing the integral form of (3.1) within the i-th. cell, Ci,

∂

∂t

∫
Ci

φ(x, t)dx = f [φ(xi− 1
2
, t)]− f [φ(xi+ 1

2
, t)] + S(xi+ 1

2
, t)− S(xi− 1

2
, t) (3.2)

Ci : x ∈ [xi− 1
2
, xi+ 1

2
].

We define i-th. cell average at time interval tn (t ∈ [t0, tfinal] has been discretized into a

number of time steps [t0, t1, · · · , tn]) as,

Φi
n ≈ 1

∆xi

∫ x
i+1

2

x
i− 1

2

φ(x, tn) dx, (3.3)

where ∆xi = xi+ 1
2
− xi− 1

2
is the length of the i-th. cell.

Integrating equation (3.2) from tn to tn+1 yields,

∫
Ci

φ(x, tn+1)dx−
∫
Ci

φ(x, tn)dx =

∫ tn+1

tn

f [φ(xi− 1
2
, t)]dt−

∫ tn+1

tn

f [φ(xi+ 1
2
, t)]dt

+

∫ tn+1

tn

[S(xi+ 1
2
, t)− S(xi− 1

2
, t)]dt,

dividing by ∆xi and rearranging,

1

∆xi

∫
Ci

φ(x, tn+1)dx =
1

∆xi

∫
Ci

φ(x, tn)dx

− 1

∆xi

∫ tn+1

tn

{f [φ(xi+ 1
2
, t)]− f [φ(xi− 1

2
, t)]}dt +

+
1

∆xi

∫ tn+1

tn

[S(xi+ 1
2
, t)− S(xi− 1

2
, t)]dt.
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Figure 3.1: Finite volume discretization

Assuming a viscous dissipative source S = νφx (ν is the kinematic viscosity) and using

equation (3.3) we obtain,

Φi
n+1 = Φi

n − ∆t

∆xi

[(Flux)n
i+ 1

2
− (Flux)n

i− 1
2
] + (3.4)

ν
1

∆xi

∫ tn+1

tn

[φx(xi+ 1
2
, t)− φx(xi− 1

2
, t)]dt,

where (Flux)n
i+ 1

2

≈ 1
∆t

∫ tn+1

tn
f [φ(xi+ 1

2
, t)]dt is some approximation of the average flux

(described later in this section) along the cell interface at xi+ 1
2
, see figure (3.1) for an

illustration of the grid cells.

3.1.1 MUSCL limiters

Within each cell if we consider a piecewise constant approximation to the solution (i.e., slope

of the reconstruction is equal to zero), then we obtain a first order method; however if we

use a piecewise linear approximation within each cell, Ci,

φ(x ∈ [xi− 1
2
, xi+ 1

2
]) = Φi + ∆Φi(x− xi)

where Φi is given by equation (3.3), xi is the coordinate of the i-th. cell center and ∆Φi

is equal to the difference between the values of the state at the right and left cell interfaces

(it denotes the slope of reconstructed solution in each cell), we obtain a family of second

order approximate schemes.
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Conservation laws such as the Euler equations in gas dynamics [60] and the simple Burgers

equation (3.1) support solutions that have discontinuities (or, shocks), expansion fans,

contact discontinuities. Apart from ensuring satisfaction of the CFL (Courant-Friedrichs-

Lewy) condition [51], unless special treatment is taken, the numerical solutions will lead

to excessive dissipation, incorrect phase speeds, spurious oscillations; see Laney [60] for an

extensive comparison of many numerical methods applied to solve simple linear and nonlinear

advection and Euler equations.

One way to prevent such spurious oscillations and preserve TVD [87, 88, 53] property is

by limiting the values of the slopes (∆Φi). Lin et al. [64] listed a number of consistent ways

of deriving the limited slopes in various forms and compared their impact on the solution of

linear advection equation. We will follow their approach for arriving at various formulations

of the slope (from now onwards we will assume an uniform grid, i.e, ∆xi = ∆x ∀ i).

1. Limiter 1 (first order scheme):

∆Φn
i ≡ 0, ∀ i. (3.5)

2. Limiter 2 (unconstrained van Leer scheme):

[∆Φn
i ]avg =

1

∆x

δΦn
i− 1

2

+ δΦn
i+ 1

2

2
, (3.6)

where δΦn
i+ 1

2

= Φn
i+1 − Φn

i and ”avg” means the averaging operator in the above

equation. This provides us a simple second order accurate scheme, but the values

of the slopes are not limited, in other words, no limiter has yet been applied.

3. Limiter 3 (simple positive definite scheme):

[∆Φn
i ] =

1

∆x
SIGN([∆Φn

i ]avg) ·MIN [|[∆Φn
i ]avg|, 2DIM(Φn

i , Φ
min)], (3.7)

the value of the slope has been limited using the least value (over all of xi) of Φn
i and

[∆Φn
i ]avg. DIM(p, q) is defined as the positive difference between p and q,

DIM(p, q) =

{
p− q, if p > q

0, otherwise.
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4. Limiter 4 (monotonicity preserving scheme):

Another form of slope limiter which ensures monotonicity, suggested by van Leer [66,

89] is the following,

[∆Φn
i ] =

{
1

∆x
[δΦn

i− 1
2

· δΦn
i+ 1

2

]/[∆Φn
i ]avg, if SIGN(δΦn

i− 1
2

) = SIGN(δΦn
i+ 1

2

),

0, otherwise.
(3.8)

5. Limiter 5 (constrained van Leer scheme):

We can determine locally defined minimum and maximum values of the solution as,

Φmin
i = MIN [Φn

i−1, Φ
n
i , Φ

n
i+1]

Φmax
i = MAX[Φn

i−1, Φ
n
i , Φ

n
i+1] (3.9)

and use them to limit the value of the slope as following [66, 89] (also ensures

monotonicty),

[∆Φn
i ] =

1

∆x
SIGN([∆Φn

i ]avg) ·MIN [|[∆Φn
i ]avg|, 2DIM(Φn

i , Φ
min
i ), 2DIM(Φmax

i , Φn
i )].

(3.10)

6. Limiter 6 (global min./ max. slope limited scheme):

In the above formulation of the limiter, we used the locally computed minimum and

maximum values of the solution. Instead if the global minimum and maximum values

of Φn
i are set to be equal to Φmin

global and Φmax
global respectively, and replacing these in above

limiter formulation, we obtain:

[∆Φn
i ] =

1

∆x
SIGN([∆Φn

i ]avg)·MIN [|[∆Φn
i ]avg|, 2DIM(Φn

i , Φ
min
global), 2DIM(Φmax

global, Φ
n
i )].

(3.11)

We will now use these values of slopes and follow the approach of Essentially Non

Oscillatory (ENO) schemes to arrive at an expression for the flux at the cell interfaces.
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3.1.2 ENO flux

To calculate the flux at the right cell face xi+ 1
2
, we used the ENO [90, 91, 92, 60] flux

formulation. Using the i-th. and i + 1 cell reconstructed values evaluated at xi+ 1
2

(see Laney

[60] chapter 23 for details), we obtain

(Flux)n
i+ 1

2
= fG[{Φn

i +
∆Φn

i ∆x

2
(1− ∆t

∆x
Φn

i )}, {Φn
i+1 −

∆Φn
i+1∆x

2
(1 +

∆t

∆x
Φn

i+1)}], (3.12)

where

fG[Φn
i , Φ

n
i+1] =

{
MIN [f(Φn

i ), f(Φn
i+1), f(Φ∗)]if Φn

i 6 Φn
i+1,

MAX[f(Φn
i ), f(Φn

i+1), f(Φ∗)]if Φn
i > Φn

i+1.
(3.13)

where Φ∗ is such that the flow speed given by, ∂f
∂Φ

=
∂ Φ2

2

∂Φ
= Φ = Φ∗ = 0.

Remark: If the slope in each cell is equal to zero, as in the equation (3.5), then the above

ENO flux form reduces to Godunov flux form [93].

Instead of using a piecewise linear reconstruction within each cell, we can as well apply

the piecewise parabolic reconstruction approach of Colella and Woodward [94, 95, 96] within

each cell.

3.1.3 PPM reconstruction

We have applied the PPM to reconstruct the state within each cell and to obtain the values

of the state at left and right cell interfaces.

φ(x ∈ [xi− 1
2
, xi+ 1

2
]) = ΦL,i + x[∆Φi + Φ6,i(1− x)].

ΦL,i and ΦR,i are approximations of the state at the left and right cell interface, as in

MUSCL piecewise linear extrapolation, ∆Φi = ΦR,i −ΦL,i and Φ6,i = 6(Φi − 1
2
(ΦL,i + ΦR,i))

for details of the above reconstruction procedure, see [94].

The fluxes at the interfaces have been directly evaluated using the calculated values, ΦL,i

and ΦR,i for every i-th. cell. We have used a second order Runge-Kutta (R-K) explicit

scheme to integrate in time, described below.
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3.1.4 Integration in time using a second order optimal TVD R-K
method

Using equations (3.12) and (3.13) or the PPM scheme for calculating the flux and forward

differencing for the diffusion term, we can write the following simple forward Euler update

formula for Φn+1
i ,

Φi
n+1 = Φi

n − ∆t

∆x
[(Flux)n

i+ 1
2
− (Flux)n

i− 1
2
] + (3.14)

ν
∆t

∆x2 [Φn
i+1 − 2Φn

i + Φn
i−1].

The above numerical scheme is at-least second order accurate (MUSCL schemes: (3.6)-

(3.9) second order, whereas PPM being third order accurate) in space for sufficiently smooth

φ (φ ∈ C2), but it is only first order accurate in time, also it does not preserve the TVD

property for time integration. In order to overcome these drawbacks, we used a second

order (accurate in time) optimal TVD R-K scheme [97, 98], given by Gottlieb and Shu [99].

Following their notation, let

L(Φn
i ) = − 1

∆x
[(Flux)n

i+ 1
2
− (Flux)n

i− 1
2
] + ν

1

∆x2 [Φn
i+1 − 2Φn

i + Φn
i−1],

then the following sequence of two steps gives us,

Φ
(1)
i = Φn

i + ∆t L(Φn
i ),

Φi
n+1 =

1

2
Φn

i +
1

2
Φ

(1)
i +

1

2
∆t L(Φ

(1)
i ).

This completes the description of discretization in space (1-D) and time. We have

tested these various finite volume methods using the aforementioned advection schemes.

Comparison of the numerical results with the exact solution is provided for the following

test cases (see section 3).

3.1.5 Extension to 2-D: global shallow water equations model

The shallow water (SW) equations on the sphere describe the motion of a shallow (horizontal

scales of interest are much larger in comparison to the depth of the fluid) homogeneous
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incompressible and inviscid fluid layer. The solutions of these equations exhibit some of

the important properties of large scale atmospheric flow and the equations have certain

important features (such as, horizontal dynamical aspects) in common with more complicated

NWP models. NWP models couple such shallow water models vertically, using pressure as the

vertical coordinate, see for e.g., [100] and [67] for details. The SW equations in spherical

coordinates in the vorticity divergence form can be written as,

∂h

∂t
+∇ · (Vh) = 0 (3.15)

∂u

∂t
= Ωv − 1

a cosθ

∂

∂λ
[κ + ϕ] (3.16)

∂v

∂t
= −Ωu− 1

a

∂

∂θ
[κ + ϕ] (3.17)

where h represents the fluid height (above the surface height, hs), V = (u, v), u and v

represent the zonal (λ: longitude) and meridional (θ: latitude) wind velocity components

respectively, ω is the angular velocity of the earth, a is the radius of the earth. The free

surface geopotential is given by

ϕ = ϕs + g h,

ϕs = ghs, κ = 1
2
V · V is the kinetic energy, and Ω = 2ωsinθ + ∇ × V is the absolute

vorticity. Details on the other forms of writing the SW equations and their development can

be found in [101] and [102].

The finite volume shallow water equations model of Lin and Rood [68] has been used

for integrating the above SW equations. The 1-D advection schemes described thus-far have

been implemented in two dimensions by using a sequential operator-split approach, details

of which have been provided in [65]. A two grid combination based on C-grid and D-grids

has been used while advancing from time step tn to tn + ∆t. In the first half of the time

step, the advective winds (time centered winds on the C-grid: (u∗, v∗) are updated on the

C-grid, and in the other half of the time step, the prognostic variables (h, u, v) are updated

on the D-grid (in this study, we will use the same advection scheme on both the grids). The

poles have been treated in a similar fashion as that in [103] using a polar Fourier filter.

In particular, it is to be noted that the algorithm conserves total mass (in other words,

the height field, h, integrated on the surface of the sphere) for all the time of the numerical
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integration and, after a 60 day integration of the model, the loss in total energy (total energy

is defined as the integral of 1
2
hV · V + 1

2
g[(h + hs)

2 − hs
2] on the surface of the sphere) is

approximately lost by 0.1%, and the loss in potential enstrophy (potential enstrophy is the

integral of 1
2h

Ω2) is 1%. More details are available in Lin and Rood, 1997 [68]. This represents

excellent conservation of integral invariants of the shallow water equations.

3.2 Test cases and results

3.2.1 Case 1: 1-D viscous Burgers equation

In 1-D we will consider the following Burgers equations,

∂φ

∂t
+

∂

∂x
(
φ2

2
) = ν(

∂2φ

∂x2
), (3.18)

for x ∈ (−π, π) and t > 0,

with boundary conditions, φ(x = ±π, t) = 0.

Benton and Platzman [104] provide an exact solution for the above Burgers equation

(3.18), with initial condition given by,

φ(x, 0) = φ(x, t = 0) = −R sin(x), (3.19)

where R is the Reynolds number. It is related to the viscosity via the relationship,

R = UL
ν

, here the values of (velocity scale) U and (length scale) L have been prescribed to

be equal to unity. Then the exact solution assumes the form:

φexact(x, t) =
4
∑∞

n=1 nane
−n2t sin(nx)

a0 + 2
∑∞

n=1 ane−n2t cos(nx)
, (3.20)

where an = (−1)nIn(1
2
R), In is the Bessel function of second kind. For small values of

R, viscous dissipation dominates over advection and the solution decays uniformly as time,

t increases, as depicted in figure (3.2) (which has been generated by setting R = 1).

In figures (3.3)- (3.4) we have plotted the exact solution along with solutions obtained

using the various numerical schemes (MUSCL schemes, with limiters 1- 6, and the PPM) at

t = 1. Since the Bessel functions of second kind are exponentially decreasing functions, to

compute φexact we have used n = 10 for the summation in equation (3.20). The numerical

solutions have been computed using a resolution of Nx = 40 grid cells (∆x = 2π
Nx

) and a time

40



−4 −3 −2 −1 0 1 2 3 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

Φ

Exact solution time history

t=0
t=0.5
t=1.0
t=1.5
t=2.0
t=2.5

Figure 3.2: Exact solution at t = 0, 0.5, 1.0, 1.5, 2.0, 2.5

step (∆t) given by the CFL criteria, CFL = U∆t
∆x

, where the CFL number was assigned a

value of 0.01.

The first order scheme (limiter 1) and limiter 3 (simple positive definite scheme, which was

based on limiting the slope based on the least value of Φn
i and [∆Φn

i ]avg), both undershoot at

the peak value of the numerical solution at x = ±π/2. It is to be noted that all the numerical

solutions have the correct phase speed. In the case of the global min./max. limiter 6, we

prescribed Φmin = −1 and Φmax = 1.

In table (3.1) we show that the numerical solutions converge to the exact solution in

both L2 and L∞ norms, at t = 1. As expected the first order scheme (limiter 1) has

the largest error compared to all other schemes. Lin et. al [64] compared limiters 3, 4,

5 and 6 on a linear advection problem using a rectangular pulse. Based on their study,

they concluded that limiter 4 provides the largest implicit diffusion among all the limiters

considered, whereas limiter 2 provides the smallest implicit diffusion and the constrained

van Leer scheme (limiter 5) is less diffusive than limiter 4.
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Figure 3.3: Exact and numerical solutions (in forward mode) of the 1-D nonlinear viscous
Burgers equation with slope limiters 1, 2, 3 and 4 at t = 1.
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Figure 3.4: Same as in figure (3.3), but with limiters 5, 6 and PPM scheme.
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Table 3.1: Errors in L2 and L∞ norms for different advection schemes (based on changing
the slope limiter, lim.1 indicates limiter 1) in forward mode, with ∆t = 1.5708 × 10−3 at
t = 1.

L2 - Error
Nx lim.1 ×10−2 lim.2 ×10−3 lim.3 ×10−3 lim.4 ×10−3 lim.5 ×10−3 lim.6 ×10−3 PPM ×10−3

40 3.1357 1.39420 1.39419 1.4882 1.5252 1.3942 1.308409
80 2.2142 0.852385 0.852384 0.79215 0.83126 0.852384 1.037877
160 1.5716 0.70370324 0.70370321 0.69061 0.69817 0.70370317 0.81714

L∞ - Error
Nx lim.1 ×10−3 lim.2 ×10−3 lim.3 ×10−3 lim.4 ×10−3 lim.5 ×10−3 lim.6 ×10−3 PPM×10−3

40 8.0511 0.3200545 0.3200543 0.32797 0.34984 0.32004 0.3833
80 4.0426 0.17541576 0.17541570 0.16975 0.17335 0.1754155 0.1965
160 2.0321 0.087102731 0.087102728 0.086004 0.086741 0.087102723 0.0975

3.2.2 Case 2: 1-D inviscid Burgers equation

To further investigate the performance of these limiters on a model problem with no viscosity,

we tested them using the following inviscid nonlinear Burgers equation,

∂φ

∂t
+

∂

∂x
(
φ2

2
) = 0.

With the following initial condition (on the whole real line) [105],

φ(x, 0) =


0, x < −1
1
2
, −1 < x < 0

0, x > 0.

(3.21)

The solution develops into a shock and an expansion fan (for details of the solution, see

[105]), analytically given by (for t ≤ 4, i.e., before the expansion fan meets the shock),

φ(x, t) =


0, x < −1
x+1

t
, −1 < x < t

2
− 1

1
2
, t

2
− 1 < x < t

4

0, x > t
4
.

(3.22)

In figure (3.5) we have plotted the exact along with the numerical solutions obtained

using the various numerical schemes (MUSCL schemes, with limiters 1- 6, and the PPM) at

t = 2. The numerical solutions have been computed using a resolution of Nx = 80 grid cells
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Figure 3.5: Exact and numerical solution (in forward mode) of the 1-D nonlinear inviscid
Burgers equation with slope limiters 1, 2, 3, 4, 5, 6 and PPM scheme at t = 2

.

(∆x = 4
Nx

) and a time step (∆t) given by the CFL criteria, CFL = U∆t
∆x

, where the CFL

number was assigned a value of 0.1 and U = 0.5.

As expected, the first order accurate scheme is diffusive. The solutions obtained by

using limiter 2 (unconstrained van Leer scheme) and limiter 3 (simple positive definite

scheme), both over shoot, indicating that there is a lack of (implicit) viscosity. Though the

solution obtained by using limiter 4 (monotonicity preserving scheme) does not suffer from

such problems, it is diffusive, when compared to the computed solutions using limiters 5, 6
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(constrained van Leer and global min./ max. slope limited schemes respectively) and the

PPM scheme.

Following arguments in section 2 of [65], limiter 3 (positive definite scheme) does

not provide satisfactory solutions to 2-D tracer advection equation. Also it requires

specification of the minimum values of the solution a-priori, the same being the case with

the global min./ max. scheme (limiter 6) which requires specification of both minimum

and maximum values of the solution a-priori, which is not accurately possible for complex

higher dimensional flows. Limiter 5 (constrained van Leer scheme) has been shown to be

better than limiter 4 (monotonicity preserving scheme) in [64] due to the fact that limiter 5

provides less implicit diffusion that limiter 4. Therefore limiter 1 (first order scheme),

limiter 2 (unconstrained van Leer scheme), limiter 5 (constrained van Leer scheme) and

PPM advection schemes are of interest to global NWP modelers, such as in [67] (also see the

documentation of the Community Atmosphere Model 3.0 [106]) hence we will restrict our

2-D study to only these schemes.

3.2.3 Case 3: 2-D global SW equations

The development of a numerical solver for the global spherical SW equations is usually a first

step towards the development of a NWP model. A suite of several test cases that have been

widely used to compare different algorithmic formulations and numerical schemes for the SW

equations was suggested by Williamson et al. [101]. Therefore results obtained from these

tests could be used as a guide towards developing more complex models in higher dimensions.

The test case number 6, is the Rossby-Haurwitz wave (wavenumber 4), first proposed by

Phillips [107]. Although analytical solutions for this case in the global SW equations context

are not known, it is a very popular test case in the NWP modeling community for a number

of reasons. Haurwitz [108] showed that the Rossby-Haurwitz waves are analytic solutions

of the nonlinear barotropic vorticity equation on the sphere. They are characterized by a

pattern which moves from west to east without any change in shape.

Figures (3.6)- (3.13) provide results obtained by integration of the finite volume SW

equations model of Lin and Rood [68] using the different advection schemes for 14 and 30

days respectively (the initial condition was specified to be a Rossby-Haurwitz wave). The

resolution of the model is the same as in [68], 128 grid cells along the longitude and 64 along

the latitude, and a time step of 600 seconds. The DAY-14 solution in the case of constrained
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van Leer and PPM schemes is similar, whereas the DAY-30 solution obtained by using the

constrained van Leer is more diffused than that of the PPM scheme. The first order advection

scheme is extremely dissipative, as evident from figures (3.6) and (3.7). Therefore for 2-D

DA experiments we will not be using the first order advection scheme. The unconstrained

van Leer scheme is certainly less dissipative than the first order scheme, but more diffusive

when compared to the constrained van Leer and PPM schemes.

3.3 Programming the adjoint model

In this section the details of programming adjoint model, which is useful to obtain the

gradient of the cost functional with respect to the control parameters efficiently, is described.

The following form of the cost functional is considered,

J (x) =
1

2

n∑
k=0

(x(tk)− xobs(tk))
T W(tk) (x(tk)− xobs(tk)), (3.23)

where t ∈ [t0, tn] is the (data) assimilation time window comprised of n time steps, W(tk)

is a diagonal weighting matrix, x(tk) is the evolving state vector and xobs(tk) is another

(evolving) vector, which is made up of the observations that are distributed in both space

and time. The above convex cost functional is minimized (subject to the evolution of the

state vector by the nonlinear model as a strong constraint) using a robust unconstrained

minimization method described in the next section. The directional derivative of the above

cost functional, in the direction of δx is given by (∇xJ )T δx. From equation (3.23),

δJ (x) =
n∑

k=0

(W(tk) (x(tk)− xobs(tk)))
T δx(tk), (3.24)

where δx(tk) is the perturbation of the state vector obtained from the perturbation of the

model parameters, x. Using the above two equations,

(∇xJ )T δx =
n∑

k=0

(W(tk) (x(tk)− xobs(tk)))
T δx(tk). (3.25)

We follow the approach of first discretize and then differentiate (see [10] and [14] for

details). Discrete numerical operations in the nonlinear forward model are having unique

corresponding operations in the adjoint model. The tangent linear model (TLM), which

was first derived and described in the previous chapter, is derived, to start with. The
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Figure 3.6: Height field isolines at Day-14 using the first order advection scheme (lim.1), for
the Rossby-Haurwitz wavenumber 4 case using a finite volume global SW equations model.
Contour interval is 100 m.

Figure 3.7: Same as above, but at Day-30
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Figure 3.8: Same as in figure (3.6), but using unconstrained van Leer scheme (lim.2).

Figure 3.9: Same as above, but at Day-30
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Figure 3.10: Same as in figure (3.6), but using constrained van Leer scheme (lim.5).

Figure 3.11: Same as above, but at Day-30
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Figure 3.12: Same as in figure (3.6), but using PPM advection scheme.

Figure 3.13: Same as above, but at Day-30

50



TLM code is programmed by linearizing line by line, the nonlinear forward model code.

Recall that the TLM can be formally viewed as a result of multiplying linear operators:

Mk = L1, L2, . . . , Lk, where each of the Lk is either a DO-loop or a subroutine in the TLM.

Then the adjoint model, MT
k is a product of the (adjoint) linear operators, LT

1 , LT
2 , . . . , LT

k .

Hence the adjoint model is the transpose of the TLM. This relationship is used to write the

adjoint model code, using the TLM code (see [109] and [1] for details), and to verify the same

for the transposition property (all our subroutines satisfactorily passed this test). We have

used TAMC [43, 110, 111] (an automatic differentiation software) to help us derive the TLM

and adjoint model codes; however, we would like to emphasize that sufficient caution must

be taken while differentiating functions such as the ABS (absolute value function), SIGN

(signum function), DIM (dimension function), MIN and MAX (minimum and maximum

functions respectively), these functions frequently arise due to the nature of the formulation

of the various slope limiters, such as limiters 3, 5 and 6 (section 2.1). In appendix B, we

provide a segment of our FORTRAN code which illustrates the differentiation of the MIN

function.

The adjoint model is integrated backwards in time to obtain the gradient of the cost

functional, ∇xJ in the following sequence of three steps,

1. Integrate the adjoint model backwards in time, from time step tk to t0 with zero final

conditions for the adjoint variables x∗.

2. The forcing term W (tk) (x(tk) − xobs(tk)) is added to the value of adjoint variables

whenever time tk (k = 1, 2, . . . , n) is reached.

3. Finally at t0 the value of adjoint variables equals the gradient of the cost functional

with respect to the control variables.

Using the Taylor series expansion of the cost functional, upto first order,

J (x + η∇J ) = J (x) + η(∇J )T∇J + O(η2), (3.26)

where η is a scalar and the gradient, ∇J = ∇xJ , is obtained by using the adjoint model.

We can rewrite the above equation as in [10],

Ψ(η) =
J (x + η∇J )− J (x)

η∇J T∇J
= 1 + O(η). (3.27)
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Therefore, the gradient provided by the adjoint model is assumed to be accurate up-to

machine accuracy if limη→0Ψ(η) = 1.0 The truncation errors dominate for η > 10−3, whereas

for η near machine precision, roundoff errors accumulate. Tables (3.2) and (3.3) provide

values of Ψ(η) versus η obtained for the adjoint model using various limiters and the PPM

advection scheme case for the 1-D Burgers and 2-D global SW equations models respectively.

See [112] for details of the adjoint model for the SW equations model used.

Table 3.2: Gradient check: values of Ψ(η) for different η for slope limiters and PPM advection
scheme in adjoint mode for 1-D Burgers equation model.

Ψ(η)
−log10(η) lim.1 lim.2 lim.3 lim.4 lim.5 lim.6 PPM

2 2.0768853 2.1463904 2.1032286 2.1440140 2.1455097 2.0595244 2.1503010
3 1.1346913 1.1427750 1.1397331 1.1426656 1.1427245 1.1366907 1.1429770
4 1.0137129 1.0144949 1.0143250 1.0144854 1.0144909 1.0141552 1.0145123
5 1.0013705 1.0014515 1.0014379 1.0014508 1.0014513 1.0014242 1.0014536
6 1.0001339 1.0001451 1.0001414 1.0001453 1.0001454 1.0001377 1.0001459
7 1.0000102 1.0000145 1.0000145 1.0000148 1.0000148 1.0000145 1.0000151
8 0.9999978 1.0000014 1.0000014 1.0000017 1.0000017 1.0000014 1.0000020
9 0.9999966 1.0000001 1.0000001 1.0000004 1.0000004 1.0000001 1.0000007
10 0.9999965 0.9999999 1.0000000 1.0000003 1.0000002 1.0000000 1.0000006
11 0.9999965 0.9999999 1.0000002 1.0000008 1.0000006 1.0000000 1.0000006
12 0.9999951 1.0000018 1.0000070 1.0000042 1.0000018 0.9999995 1.0000032

3.4 Minimization

We used an unconstrained limited memory quasi-Newton (L-BFGS) minimization algorithm

[113, 114] (availabe for download from www.netlib.org/opt/lbfgs um.shar) for minimization

of the cost functional J = J (xk), where xk is the n component (control) vector at the kth

iteration. gk = g(xk) = ∇Jk is the gradient vector of size n, and Hk = ∇2Jk is the n × n

symmetric Hessian matrix of the second partial derivatives of J with respect to the control

vector. The new iterate is given by,

xk+1 = xk + αk pk, (3.28)

where pk is the descent direction (for instance, pk = −gk for the steepest descent method

and pk = −H−1
k gk for the quasi- Newton methods), and αk is the step length.
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Table 3.3: Gradient check: values of Ψ(η) for different η for slope limiters and PPM advection
scheme in adjoint mode for 2-D global SW equations model.

Ψ(η)
−log10(η) lim.1 lim.2 lim.5 PPM

1 1.716810 1.894919 1.086659 1.013195
2 1.085421 1.087817 1.007975 1.003011
3 1.009237 1.008724 1.000429 1.001268
4 1.001031 1.001104 0.999922 1.000770
5 1.000126 1.000337 0.999962 1.000825
6 1.000012 1.000304 1.000000 1.000000
7 1.000000 1.000000 1.000705 0.994831
8 0.999999 1.000496 1.001122 0.941435
9 0.999999 1.000872 1.001174 0.422035
10 0.999979 1.000966 1.001313 -4.817312

Iterations are terminated when (using the L2 norm)

‖gk‖ < EPS ·MAX(1, ‖xk‖).

Here we specified EPS = 10−5 as our termination criteria.

Given a sequence of two successive iterates, xk+1 and xk, gk = ∇Jk and gk+1 = ∇Jk+1.

Then gk+1 − gk = Hk pk which can be rewritten as qk = Hk pk. If the Hessian is constant,

then qk = Hpk, and we can write the following quasi- Newton condition for 0 ≤ i ≤ k,

H−1
k+1qi = pi

In general, the evaluation of the Hessian matrix is impractical and costly. Quasi- Newton

methods use an approximation of the inverse Hessian matrix. We start with an identity

matrix and then iteratively, a better approximation to the inverse Hessian matrix is built

up, in such a way that Hk preserves positive definiteness and symmetry.

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) update formula for the Bk+1 (i.e, H−1
k+1)

is given by,

Bk+1 = Bk +
(1 + qT

k Bkqk)

qT
k pk

pkp
T
k

pT
k qk

− pkq
T
k Bk + Bkqkp

T
k

qT
k pk

, (3.29)

this is a symmetric rank two update, constructed using the vectors pk and Bkqk. Thus

each minimization iteration proceeds by first checking for termination criteria, finding the
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direction of descent: pk (using the approximation to the inverse Hessian matrix), find an

optimal step length (αk) in the direction of pk, and finally using equation (3.28) find the

next xk+1. The limited memory version, L-BFGS is an adaptation of the BFGS algorithm

to large problems, achieved by changing the above Hessian update formula, see for details

[113, 114], [46] and [115, 116] for applications.

3.5 Data assimilation experiments

This section describes results obtained using the adjoint model described in the previous

section in order to conduct data assimilation for retrieval of optimal initial conditions which

serve as control variables. Following work of Vukićević et al. [74], we have consistently used

the same advection scheme both in the nonlinear forward and adjoint models. Our goal is

to minimize the cost functional given in equation (3.23), namely

J (x) =
1

2

n∑
k=0

(x(tk)− xobs(tk))
T W(tk) (x(tk)− xobs(tk)),

with respect to the initial state x(t0) ≡ φ(x, 0) as the control parameter and we have

prescribed W(tk) ≡ I, i.e the identity matrix for the 1-D Burgers equation case. In the global

2-D SW equations model case, the control vector is given by x(t0) = (h, u, v) at the initial

time and W (tk) was prescribed to be equal to a block diagonal matrix with [10−4 I, I, I] as

the diagonal entries.

The framework of identical twin experiment has been used in this study, which has been

frequently used to compare different methods in developmental stages. In twin experiments,

observations are not obtained from reality, but are generated by using a version of the

model which is slightly different to the model used in DA. Twin experiments provide a good

diagnostic tool for determining the quality of the method, since the errors are controlled;

thus those methods that perform well in twin experiments are often considered as candidates

for conducting DA of real observations.

In our 1-D twin experiments, we used the initial condition given in (3.19), run the forward

model up-to time step tk to obtain the observations, xobs(tk) and in the 2-D case, the Rossby

wave has been used as the initial condition. The initial condition is then randomly perturbed,

xpert(t0) = x(t0) + ε ·RAND · x(t0), (3.30)
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where ε has been assigned a value of 0.01 and RAND is a pseudo random number, such that

RAND ∈ [−0.5, 0.5].

The above perturbed initial condition is used as a first guess to minimize the cost

functional, J , and to integrate the nonlinear model to tk, which yields x(tk). Thus the goal

is to recover the unperturbed initial condition, x (from now onwards denoted by xrecovered),

which is close to x(t0) at the conclusion of the minimization process. An assimilation time

window of [0, 2.0] seconds has been used in the 1-D case and in the 2-D case, the length

of the assimilation window was taken to be 6 hours. The same discretization, in space and

time, which was used in section 3 to test and compare the different schemes for the smooth

test cases, is used here as well.

Figures (3.14) - (3.17) show the variation of the cost functional, J , and gradient norm

(in L2 norm) versus the number of iterations and in table (3.4) we compare the values of

xrecovered with x(t0) for different advection schemes (limiters 1- 6 and the PPM) in the 1-D

case. For the 2-D case, please see figures (3.18)- (3.19) and table (3.5) respectively. The

cost functional has been successfully reduced by about nine orders of magnitude in the 1-D

case and in the 2-D case by about four orders of magnitude. Whereas the gradient norm

was reduced by about five orders of magnitude (in the previous section, we described the

termination criteria for the minimization process) for all the limiters in the 1-D case, and by

about three for the 2-D case. The fact that all of these schemes (in the 1-D case) achieve the

same convergence criteria for successful termination in about 45-50 minimization iterations

(limiter 1: 51 iterations, limiter 2: 47, limiter 3: 43, limiter 4: 42, limiter 5: 52, limiter 6:

37), except for the PPM scheme, which took 65 iterations indicates that the approximation

to the Hessian matrix that is constructed by the L-BFGS minimization algorithm does not

differ from one advection scheme to the other (the spectrum of the eigenvalues of the Hessian

matrix influences the minimization process [46]). In the 2-D case, limiter 2: 577, limiter 5:

589 and PPM scheme took 575 minimization iterations to achieve the prescribed convergence

criteria. It is to be noted that though the PPM scheme is well known to be a very accurate

scheme (third order accurate), it requires more CPU time when compared to that required by

other schemes (both in forward and adjoint modes, since the adjoint model performs forward

computations as well, this problem becomes compounded). We would like to mention that

limiter 3 (simple positive definite scheme), the local and global min./ max. (limiters 5 and

6 respectively) slope limited and PPM schemes all have switches, in other words, involve
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computation of min. and (or) max. of certain variables to evaluate the slope limiter (see

equations (3.7), (3.9) and (3.11)). Programming these switches in the adjoint model proves

to be a very tedious and time consuming task.

The quality of the optimal initial conditions has often been compared by using them to

forecast for a time period longer than the time window of DA. A comparison of such a forecast

using xpert and xrecovered to (T = 2.2 seconds in 1-D case and T = 7 hours in the 2-D case)

is provided in tables (3.4) and (3.5) respectively. The forecast errors are reduced for all the

schemes, in both 1-D and 2-D, when the xrecovered is used as the optimal initial condition. As

evident, in the 1-D case, though the first order scheme (limiter 1) yields the closest xrecovered

(to x(t0)), the forecast obtained by using the xrecovered is inferior to that obtained by using

other limiters. Limiters 3 and 5 show the least errors in recovering the initial conditions

and forecasting. In the 2-D case, the PPM scheme provides the best recovery of the optimal

initial conditions and least forecasting errors as well, when compared to limiters 2 and 5.

Table 3.4: Comparison of the φrecovered for different advection schemes based on 1-D data
assimilation experiments, ‖φpert(x, 0)−φ(x, 0)‖2 = 1.3004 ×10−2 for all the schemes; forecast
time, T = 2.2 seconds.

Advection Scheme ‖φrecovered − φ(x, 0)‖2 ‖φpert(x, T )− φ(x, T )‖2 ‖φrecovered(T )− φ(x, T )‖2

Lim.1 3.1063×10−6 1.2362×10−3 7.7479×10−8

Lim.2 7.1633×10−6 1.245593×10−3 1.3876×10−8

Lim.3 4.9715×10−6 1.245587×10−3 1.0756×10−8

Lim.4 8.3664×10−6 1.24545×10−3 1.1044×10−8

Lim.5 4.1360×10−6 1.24579×10−3 1.2286×10−8

Lim.6 6.3637×10−6 1.245584×10−3 6.7988×10−8

PPM 1.3140×10−5 1.24583×10−3 9.7266×10−8
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Figure 3.14: Variations of the normalized cost function J
J0

and normalized gradient ‖g‖
‖g0‖

versus the number of minimization iterations using slope limiters 1 and 2 in forward and
adjoint models for the 1-D Burgers equation model (in log scale).
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Figure 3.15: Same as in the above figure, but with limiters 3 and 4.
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Figure 3.16: Same as in figure (3.14), but with limiters 5 and 6.

0 10 20 30 40 50 60 70
!8

!7

!6

!5

!4

!3

!2

!1

0

number of iterations

LOG10(J/J0)
LOG10(||g||/||go||)

Figure 3.17: Same as in the above figure, but with the PPM scheme.
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Figure 3.18: Variations of the normalized cost function J
J0

and normalized gradient ‖g‖
‖g0‖

versus the number of minimization iterations using limiters 2 and 5 in forward and adjoint
models for the 2-D global spherical SW equations model (in log scale).
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Figure 3.19: Same as in the above figure, but with the PPM scheme.
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Table 3.5: Comparison of the xrecovered for different advection schemes based on data
assimilation experiments, for slope limiters and PPM advection scheme in adjoint mode
for 2-D global SW equations model. RMS errors h(pert) − h(unpert) = 2.5993, u(pert) −
u(unpert) = 0.1115 and v(pert)−v(unpert) = 8.0081×10−2 for all the schemes; T = 7 hours.

RMS errors for u - wind
Advection Scheme urecovered − u(x, 0) upert(x, T )− u(x, T ) urecovered(T )− u(x, T )

Lim.2 2.33491594196759075E-4 3.3630019845121123E-2 1.12476527351364601E-4
Lim.5 5.63382077564010195E-4 3.34702468842524234E-2 3.32149072340977508E-4
PPM 1.06535525977395802E-4 4.94900419576975101E-2 8.87413582912270193E-5

RMS errors for v - wind
Advection Scheme vrecovered − v(x, 0) vpert(x, T )− v(x, T ) vrecovered(T )− v(x, T )

Lim.2 2.34466472857029914E-4 3.21712340658954488E-2 1.07142814969051091E-4
Lim.5 7.40685987310806394E-4 3.24462344953588347E-2 3.08314384762099097E-4
PPM 1.70534278238826311E-4 5.51154561503572893E-2 8.69239404161232235E-5

RMS errors for height field
Advection Scheme hrecovered − h(x, 0) hpert(x, T )− h(x, T ) hrecovered(T )− h(x, T )

Lim.2 0.52938283634642536 3.0605303764849494 7.38576308190367625E-2
Lim.5 1.1119488545031126 3.1776765891059209 0.19626515182457319
PPM 0.13969535459251051 3.70379538782958 2.0670192049105484E-2
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CHAPTER 4

ESTIMATION OF MODEL ERROR IN VDA USING

HIGH RESOLUTION ADVECTION SCHEMES

So far we have described the goal of variational data assimilation (VDA) as to be finding

a model trajectory that best fits (in a least squared sense) the observational data over

an assimilation time interval by adjustment of the initial conditions (and perhaps model

parameters as well) supplied for forward model integration (Le Dimet and Talagrand

1986 [11]; Navon et al. 1992[10]). In the so-called strong constraint or classical version

of VDA, it is assumed that the forecast model perfectly represents evolution of the actual

atmosphere. The best fit model trajectory is obtained by adjusting only the initial conditions

via minimization of a cost functional, subject to the model equations as strong constraint.

However NWP models are imperfect, since they are discretized, dissipative and dispersion

errors arise, and, moreover subgrid processes are not included. In addition, most of the

physical processes and their interactions in the atmosphere are parametrized, also a complete

mathematical modeling of the boundary conditions and forcing terms can never be achieved.

Usually all of these modeling drawbacks are collectively addressed by the term, model error

(ME). Following Dee (1995)[117], we would like to distinguish between forecasting and

model errors. ME is one of the causes of forecasting errors, another cause being erroneous

specification of initial conditions used to produce the forecast.

Studies indicate that ME can severely impact forecast errors, see Boer (1984)[118];

Dalcher and Kalnay (1987)[119]; Bloom and Shubert (1990)[120]; Zupanski and Zupanski

(2002)[121]. For early methods on estimating modeling errors in operational NWP models see

Thiébaux and Morone (1990)[122]; Saha (1992)[123]. Thus giving up the assumption that

the model is perfect, in the context of strong constraint VDA leads us to weak constraint

formulation of VDA, which is the main theme of this chapter; since we include time evolution
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of the variables, we could say weak constraint 4D-Var (time plus three space dimensions).

Instead we prefer to use the general term VDA, because have we used a two dimensional global

shallow water model for presenting our results.

In sequential data assimilation using Kalman filtering theory, the inclusion of ME forms

an integral part of the filter formulation, various filtering approaches which include ME

have been considered by Chepurin et al. (2005)[124]; Dee and Todling (2000)[125]; Dee and

Da Silva (1999)[126]; Dee et al. (1999)[127]; Dee and Da Silva (1998)[128]; Dee (1995)[117];

Zupanski (2005)[129]. When the number of observations is considerably smaller, the method

of representers (Bennett 1992 [42]) provides a computationally efficient (in terms of storage/

space requirements) formulation of VDA. The incorporation of ME in such a framework

has been shown by Bennett et al. (1993, 1996, 1997)[130, 131, 132]; Uboldi and Kamachi

(2000)[133].

Model error is formally introduced as a correction to the time derivatives of model

variables in the weak constraint formulation of VDA. Let the vector x(t) be used to represent

the state of the atmosphere, then its evolution accounting for ME in the NWP model is written

as,

dx(t)

dt
= M[x(t)] + T[η(t)], (4.1)

whereM[.] denotes all the mathematical operations involved in the NWP model, η represents

the ME term and T[.] is an operator that accounts for the fact that only certain components

of the state vector have modeling errors (none-the-less, T[.] is often set to be equal to the

unit matrix). ME usually varies both spatially and temporally, and has both systematic and

stochastic components. Comparing the strong and weak constraint VDA, in the formulation

of former, it is assumed that η has mean, E[η(t)] = 0,∀ t and model error covariance matrix,

Q = E[η(t) ηT (t′)] = 0,∀ t & t′, where E[.] is the mathematical expectation operator. It

should be noted that if the mean and (co)variance of a random vector are prescribed to

be equal to zero, then all realizations of that random vector are identically equal to zero,

thus, η ≡ 0. Whereas in the weak constraint version of VDA, the mean and covariance of ME

are to be specified. However exact statistical details of ME are difficult to obtain (Daley

1992a,b[134, 135]; Dee and Da Silva 1998[128]; Zhu and Kamachi 2000[136]) a fact which

led researchers to suggest a variety of assumptions to approximate ME.
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Table 4.1: List of acronyms

Acronym Definition
ECMWF European Center for Medium-Range Weather Forecasts

hPa Hectopascals
RMSE Root-mean-squared error
UTC Universal time coordinate
PPM Piecewise parabolic method
T−06 Data set from ERA-40 reanalysis project valid for 00 UTC 2 February 2001
T00 Data set obtained by 6 hour integration of T−06

T+06 12 hour integration of T−06

T+12 18 hour integration
T+18 24 hour integration
T+24 30 hour integration
T+30 36 hour integration

Early efforts to model the systematic component of ME were pioneered by Der-

ber (1989) [137]. He suggested a simplified approach to model η to be equal to λ(t) φ. The

temporal part, λ(t) is a specified function of time alone, and φ is a spatially dependent,

control variable. Three different forms of λ were considered, namely, parabolic, delta

function and constant in time. It was observed that the parabolic variation of λ provided

results comparable to a constant in time λ. Using a similar approach (Wergen 1992[138];

Zupanski 1993[139]) it was shown that inclusion of ME allows significant reduction in forecast

RMSE (table 4.1 provides a list of acronyms and their definitions).

For dynamically evolving systems such as discrete NWP models, ME is expected to depend

on the model state and should be evolving in time (Griffith and Nichols 1996, 2000 [140, 141]).

Various simple forms of evolution of ME in time were considered by Griffith and Nichols

(2000)[141], henceforth referred to as GN00. At any time step, tk, the evolution of ME is

assumed to be given by the following equation,

ηk = Tk(ek) + qk, (4.2)

where ek represents time-varying systematic components of ME, Tk describes the distribution

of systematic errors in the NWP model equations, and qk (stochastic component) is an

unbiased, serially correlated, normally distributed random vector, with known covariance.
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The evolution of ek, is in-turn modeled by assuming that it depends on the state vector, xk,

ek+1 = gk(xk, ek).

GN00 suggested three forms for the evolution of the above systematic component of ME,

1. constant in time: ek+1 = ek, Tk ≡ I. It is inferred that this form is suitable for modeling

errors in source terms and boundary conditions.

2. Evolving in time: ek+1 = Fk ek, Tk ≡ I, where Fk is a linear model, which is

appropriate for representing discretization errors.

3. Spectral form: ek+1 = ek, Tk is a block diagonal matrix, with diagonal entries given

by I, I · sin( κ
Nτ

), I · cos( κ
Nτ

), where τ is a constant time scale.

It is to be noted that the control of ME as well as the model initial conditions in weak

constraint VDA doubles the size of the optimization problem (compared to strong constraint

VDA), in addition if the stochastic component is included in the ME formulation, then one

would have to save every random realization at each model time step, which amounts to

tripling the size of the optimization problem. The computational results in GN00 were

provided by neglecting qk, the stochastic component of ME and using the constant and

evolving forms of the systematic component, see GN00 for additional details. Similar

approaches for modeling the systematic component of ME was considered by Martin et

al. (2002) [142] and reduction of ME control vector size by projecting it on to the subspace of

eigenvectors corresponding to the leading eigenvalues of the adjoint-tangent linear operators

was illustrated by Vidard et al. (2000)[143].

The above described approach (of GN00) provides the systematic component of ME at

any discrete time step, tk, in other words, the evolution of ME has been considered as a

discrete process. Vidard et al. (2004)[144] (from now onwards referred to as VPLD04)

considered a continuous in time form for the evolution of ME. This approach is consistent

with the fact that model equations are first written as differential equations and then

descretized in space and time. If the initial ME, η(t0) = η0, then VPLD04 modeled the

evolution of ME as,

dη

dt
= Φ[η(t),x(t)] + q(t), (4.3)
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where q(t) is the stochastic component of ME. Once again, neglecting the stochastic

component reduces the size of the control vector, as in the case considered by VPLD04;

they also assumed that Φ[η(t),x(t)] = η(t). This implies that the evolution of ME term is

modeled by the following simple exponential growth equation,

dη

dt
= η(t).

Such a deterministic approach to model the evolution of ME significantly simplifies the

weak constraint VDA, since only the initial ME (η0) is to be obtained via solution of the

optimization problem (see VPLD04 for additional details).

Daley (1992a)[134] suggested that model error is correlated in time and used a Markov

process to model its evolution in a simple Kalman filtering (KF) framework. The Markovian

assumption is based on the observation that as the numerical model is integrated in time,

errors show a trend of serial correlation in both time and space.The most important property

of a Markov process is that the state at any time in future is dependent only on its present

value, but not on its value in the past. Considering the model error as a Markov process, at

any two successive time steps, tk and tk+1,

ηk+1 = µGk[ηk] + (1− µ)qk, (4.4)

where µ is a scalar, such that 0 6 µ < 1, qk is the random component of ME and Gk[.] is a

linear operator (see Daley, 1992a[134] for discussion on the implementation of two different

forms of this operator, again in a KF setting). Using Gk ≡ I, in the above form of ME,

D. Zupanski (1997)[145] and Zupanski et al. (2005)[146] (henceforth referred to as ZZ05)

provided results obtained using the NCEP’ s regional weather prediction system in weak

constraint VDA framework. They assumed the initial value of the model error, η0 to be

equal to zero and a coarse time scale for the evolution of qk, such that at-most four of such

vectors are present in a 12 hour time window of data assimilation (to limit the size of control

vector in minimization). In addition, all of those qk’ s were obtained via minimization of

the weak constraint VDA cost functional, thereby implicitly assuming that each qk is a mean

deterministic forcing term. The model error covariance matrix was derived in a novel way,

please see ZZ05 and references therein for details.

Often discontinuities (on the scale of the model grid resolution) in solutions to NWP models
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arise due to sharp fronts formed in low-pressure systems, hydraulic jumps, etc. High resolu-

tion advection schemes provide means to capture such discontinuous solutions accurately. A

consistent formulation to improve the accuracy of the numerical high resolution advection

scheme, ranging from first order to second and third order accuracy in space was provided

in chapter 3 (see Akella and Navon (2005) [147], hereafter referred to as AN05). In the same

chapter was provided a comparison of the impact of using different slope limited monotone

upstream centered schemes for conservation laws (MUSCL) on data assimilation (in strong

constraint form) in one space dimension using a viscous Burgers equation model and in two

dimensions using a shallow water equations model. Another consistent method of decreasing

the discretization errors (principally truncation errors) is to refine the model resolution, such

an approach in VDA was suggested by Le Dimet and Shutyaev (2005)[148], henceforth referred

to as LDS05. However this approach is limited by the resolution of the observational system,

indeed one of the conclusions of LDS05 was that the improvement in predictability is most

sensitive to the observational errors. In the present chapter we extend the studies in AN05,

by conducting various VDA experiments in a more practical setting than that presented in

AN05. In particular the cost functional includes Jb, the background cost functional, the

formulation of which seriously impacts the performance of data assimilation system. The

square root formulation using linear balance operator and diffusion operator has been used

so that the inverse of the background error covariance matrix is not required to be specified

(details are described in appendix C).

Following is the outline of the present chapter. In the next section we focus on the issue of

uncertainty in the specification of initial conditions only (recall that it contributes to forecast

errors) with no ME term in VDA. We first show that changing the advection scheme used in

discretization of the non-linear terms in the governing equations (which can be considered

as altering the numerical model) leads to a decrease in forecasting error. Next we provide

results obtained using various schemes by conducting VDA in strong constraint form, and

once again an improvement in predictability is achieved by improving the numerical model

used in VDA. Further on we focus on the issue of accounting for model error in VDA, via weak

constraint formulation. We provide a detailed formulation of feasible forms of modeling the

ME. Using three different forms of modeling the evolution of ME, an analysis of the obtained

results is discussed.
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4.1 Impact of using different numerical advection
schemes: Model forecasts

In this chapter we have used the same global two-dimensional shallow water equations (SWE)

model for numerical experiments and analysis, that was used in the previous chapter, namely

the explicit flux-form semi-Lagrangian, finite volume shallow water equations model of Lin

and Rood (1997)[68], henceforth referred to as LR97. This model serves as the dynamical

core in the community atmosphere model (CAM), version 3.0 [106], and its operational

version implemented at NCAR and NASA is known as finite volume-general circulation

model (FV-GCM). We will follow the suggestion in LR97, and always use unconstrained van

Leer scheme to advect winds on the C-grid (this strategy provides solutions whose accuracy

is comparable to those obtained by using more CPU demanding advection schemes, for e.g.,

constrained van Leer and PPM schemes), except for the first order advection scheme, in

which case, we will use first order scheme on both C- and D-grids. Therefore on the D-grid,

we will be using the unconstrained, constrained van Leer, and the PPM schemes. Using

the finite volume method, within each cell of the discrete grid, if we consider a piecewise

linear approximation to the solution, whose slope is limited in a certain way depending on

the values of the solution at the neighboring grid cells, one can consistently derive a family

of van Leer schemes. Alternatively, if we assume a piecewise parabolic approximation to the

solution within each cell, then we obtain the PPM scheme. For further details on formulation

of these schemes see Lin et al. (1994)[64] and AN05. From now onwards we will use the

following convention to refer to our test cases,

1. first order advection scheme: first order advection on both C- and D-grids,

2. unconstrained van Leer scheme: unconstrained van Leer on both C- and D-grids,

3. constrained van Leer scheme: constrained van Leer on D-grid and unconstrained van

Leer scheme on C-grid,

4. PPM scheme: PPM scheme on D-grid and unconstrained van Leer scheme on C-grid.

Further details of the model can be found in LR97 and references therein. Also a comparison

of these schemes for the test cases proposed in Williamson et al. (1992)[101] are provided in

LR97.
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Unless specified otherwise, here we consider a regular latitude-longitude discretization

on the sphere, using a 2.5o × 2.5o grid resolution, and a time step of ∆t = 450 seconds.

Reanalyzed data at 500 hPa pressure level obtained from the ERA-40, ECMWF 40-year

reanalysis (ECMWF (2002)[149]) system, valid for 00 UTC 2 February 2001 (henceforth

denoted by T−06) was used to specify the geopotential height field (winds fields were obtained

using geostrophic assumption) as initial conditions for forward model integration. Using the

above specified advection schemes, we integrated the model for 36 hours, saving forecasts at

every 6 hour interval. In the forecast and adjoint models, to introduce systematic errors

ω (angular velocity of the earth) was set to 0.95 times the value used for generating

observations, which was specified to be equal to 7.292 × 10−5s−1. In order to obtain

the observations, a twin experiment framework is considered. To simulate real-life noisy

observations, a 1% random perturbation in the initial conditions prescribed at T−06 was

added and the PPM advection scheme was used on both C- and D- grids (though the

PPM scheme is expensive to implement, it provides a very accurate forecast, see LR97,

AN05). We integrated the model for 36 hours, once again saving the states after every

6 hours, as observations, see table (4.1) for nomenclature of the different time intervals.

RMSE between model forecasts and observations are provided for first order, unconstrained

van Leer, constrained van Leer and PPM schemes (test cases: 1- 4) in Fig. 4.1. The RMSE

indicate a trend of decreasing errors, the first order scheme being the most erroneous whereas

the PPM scheme being characterized by the least error when compared with the observational

data (since the first order scheme performs poorly when compared to the other schemes, we

will discontinue its usage in our further studies), and the unconstrained van Leer scheme

exhibits larger errors than the constrained van Leer scheme. These results are consistent

with previous results (see for instance AN05; LR97; Lin et al. (1994)[64]), the larger implicit

diffusive property of the van Leer schemes (the constrained van Leer scheme is better than

the unconstrained van Leer scheme due to the monotonicity constraint applied in the former)

when compared to the PPM scheme has been argued to be the reason for the above trend

in errors. In the following section, we further analyze these schemes, particularly in the

context of strong constraint VDA (thus dealing with the issue of erroneous specification of

initial conditions only).
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Figure 4.1: RMSE in the geopotential height and wind fields for different advection schemes.
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4.2 VDA experiments in strong constraint formalism

Data assimilation schemes determine the analysed atmospheric state as an optimal com-

bination of a-priori background information and observational information. Let xt be the

true state of the atmosphere, xb be the background field and yo denote the observations.

Usually a short-range forecast provides xb. Then the error in the background field is equal

to eb = xb − xt, and the error in the observations field is given by eo = yo −H(xt). H is an

observation operator that maps model variables to observations, if all the model variables

are observed and observations occur at every model grid point, then H ≡ I. Denoting

the mathematical expectation operator by E[.], the background error and observation error

covariances are given by B = E[(eb−E[eb])(eb−E[eb])T ] and R = E[(eo−E[eo])(eo−E[eo])T ],

respectively. Error covariances measure the uncertainty involved with both of these data

sources, hence they determine the quality of data assimilation. Due to lack of knowledge of

the true state of the atmosphere, xt, we can only guess what B and R should be. Thus they

are approximations of the true error covariances.

In strong constraint version of VDA, neglecting the ME, minimization of the following

nonlinear quadratic cost functional, Jo, accomplishes the goal of fitting model states

(x(ti)) and observations (yo(ti)) in an assimilation time interval, [t0, tn]. Often the so-

called background cost, Jb is added to Jo to regularize the following cost functional. Its

minimization with respect to the initial state, x(t0) as a control variable (Kalnay 2003[1]),

J [x(t0)] = J (x0) =
1

2
[x(t0)− xb]T B−1 [x(t0)− xb]︸ ︷︷ ︸

Jb

+
1

2

n∑
i=0

[H(x(ti))− yo(ti)]
T R−1 [H(x(ti))− yo(ti)],︸ ︷︷ ︸
Jo

(4.5)

subject to the following model equations as strong constraint,

x(t0) = x0,

dx(t)

dt
= M[x(t)], (4.6)
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is achieved by using iterative minimization algorithms, such as quasi-Newton or truncated-

Newton methods. These algorithms require availability of gradient of the cost functional with

respect to the control variables, which is in-turn efficiently obtained by backward integration

of the adjoint model (Lorenc 1986[12]; Navon et al. 1992[10]; Zou et al. 1993[116]). Note

that in the above model equations, we did not account for ME, i.e, η(t) ≡ 0,∀t.
One of the principal causes of observational errors is instrumentation error, which is

sequentially correlated in space and time. Accurate specification of the observation error

statistics is very important in the implementation of data assimilation techniques. However

in this study we deal with model errors and the observational error and background error

covariances have been assumed to be invariant in time, for further details regarding the

impact of observational errors on data assimilation, please see Daley (1992a, 1993)[134, 150].

Further we assume that the observations are not biased and that the background state and

observations are mutually uncorrelated.

The formulation of the Jb term is crucial to the performance of the data assimilation

system. Considering a single observation, at a single grid point, the analysis increment

is proportional to a column of B. Hence background error covariance spreads out the

information in the analysis from the observations and provides statistically consistent

increments at the neighboring grid points and levels of the model. It also ensures that

observations of one model variable produce dynamically consistent increments in the other

model variables. Using background knowledge makes the VDA problem well-posed even when

there are only a few observations, also it fills any data voids with good quality information

(Navon et al. 2005[151]). In addition the background state, xb provides an initial guess

for minimization of J . Ideally the optimal design of background error covariance should

take into account the average variances, autocorrelations and balance properties of the

background errors, so that the covariances of short range forecast errors in data assimilation

are adequately represented (Derber and Bouttier 1999[152]). Dynamic or flow dependent

formulation of B could improve analyses and subsequent forecasts (Riishøjgaard 1998[153]),

particularly if the observations are nonuniformly distributed. However most of the studies

and in particular, operational implementations use a static background error covariance;

since the focus of this paper is model error, we do not deal with these issues anymore and

follow the approaches of Weaver and Courtier (2001)[154]; Derber and Bouttier (1999)[152]

to construct B as a multivariate and cross correlated operator, see appendix C for further
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details (see also Gaspari and Cohn 1999[155] for an alternative formulation).

We used the same observations as used in the previous section to compare different model

forecasts to conduct DA using different advection schemes for a time interval of 24 hours

in a twin experiment framework. These observations were obtained by introducing random

perturbations in the initial condition, which can be looked upon as introducing uncertainty

in initial conditions and using a slightly different version of the model (namely, using PPM

advection scheme on both C- and D-grids). The fact that observations were generated by

usage of a different model than that used for DA, introduces a systematic model bias. We

conducted three DA experiments, in each case, we used either unconstrained van Leer (test

case 2), constrained van Leer (test case 3) or PPM advection scheme (test case 4) in both

forward and adjoint modes (see AN05 for details on derivation of the adjoint model for high

resolution advection schemes).

The background state, xb, which was the first guess for DA was obtained by a 6 hour

forward integration of the reanalyzed data, at time, T−06; see table (4.1) and Fig. 4.2 for

naming and illustration of the different data sets used in DA experiment. Five observational

data sets (at times, T00, T+06, T+12, T+18, T+24, such that every 6 hours we have an observation)

within a 24 hour interval are assimilated using the observations to model space operator, H =

I, i.e, the observations occur at every grid point of the model resolution. The observation

error covariance matrix has been taken to be a block diagonal matrix, R = [104I, 100I, 100I],

such that observational errors at every grid point are only autocorrelated and stationary in

time. We used an unconstrained limited memory quasi-Newton (L-BFGS) minimization

algorithm (Liu and Nocedal 1989[113]; Nash and Nocedal 1991[114]) for minimization of the

cost functional given in Eq. (4.5). The following termination criteria was used to conduct

DA experiments,

‖(∇J )k‖ ≤ EPS ·MAX(1, ‖xk(t0)‖), (4.7)

where ‖·‖ is the L2 norm, (∇J )k is the gradient and xk(t0) is the optimal initial state vector

at the kth. minimization iteration, and EPS was set to 5× 10−5.

During the minimization process, due to the regularization property of the minimization

algorithm, the differences on larger scales are fit in the first few iterations, yielding the

largest decrease in the cost functional, thereafter minimization proceeds to fit the smaller

discrepancies, or small decreases in the value of the functional. In general the observations
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Figure 4.2: Illustration of data assimilation time window

occurring in the middle of the DA time window (in this case, at times, T+12 and T+18) are

best fit. We used the same minimization termination criteria given by Eq. (4.7) for all three

DA experiments, and it took 114 function and gradient evaluations for the unconstrained van

Leer, 78 for the constrained van Leer and the least, 63 for the PPM. A comparison of the

RMSE in geopotential height field before and after DA is provided in Fig. 4.3 for the different

advection schemes. Comparison of the differences in geopotential height field between model

forecast using PPM advection scheme and observations at T+30, forecast verification time,

before and after data assimilation is provided in fig. 4.4 (similar results were obtained for

the wind fields, as well as, using the unconstrained and constrained van Leer advection

schemes). In all three cases we achieved more than 50% reduction in the RMSE by DA. Also

the optimized initial condition is able to provide a better forecast at T+30 (30 hour forward

integration) in all the cases. Clearly the PPM scheme is much superior when compared

to the constrained and unconstrained van Leer schemes using lesser number of function

and gradient computations in achieving the same reduction in forecast RMSE. We have

demonstrated that it is possible to decrease the component of forecasting error associated

with the mis-specification of initial conditions only by consistently improving the numerical

advection scheme used for discretizing the nonlinear advection terms in the model, holding

everything else fixed (resolution of the model and observational system as well). In the next
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section we will study the impact of introducing various forms of model error in VDA via weak

constraint formulation.

4.3 Weak Constraint VDA formulation and results
from various experiments

Now we turn our attention to one other cause of forecasting error, namely the model error. In

the strong constraint VDA, the model equations are assumed to be perfect, therefore modeling

errors (whose causes have been described earlier in the introduction) are not taken into

account. The weak constraint VDA provides a framework for incorporation of ME in the

model equations, via explicit introduction of an extra term, η(t), (as in Eq. 4.1),

dx(t)

dt
= M[x(t)] + T[η(t)].

The operator T maps the space of the ME to the space of the model state, x. If one has

a-priori knowledge that the numerical model has some drawbacks, for e.g., modeling of the

atmosphere in certain regions of the globe, (say, one of the poles) then the operator, T should

be specified in such a way that only those model grid points (at the poles) have modeling

errors, and the rest of the model states do not have any ME. In the literature (for instance,

see GN00 and VPLD04) it has often been assumed that the model state at every grid point

has an associated error, which implies that T is identically equal to the unit matrix, I, and,

the dimension of η is equal to that of the model state, x; in the present article we assume

T = I.

Past research work by Dee and Da Silva (1998)[128] indicated that ME has contri-

butions that are both systematic (or, deterministic) and random in nature. Following

Derber (1989)[137] and VPLD04 in the spirit of variational continuous assimilation, we

will model the evolution of ME as a continuous process, using the following initial value

problem (IVP), which is a continuous-in-time differential equation, (Eq. 4.3),

dη

dt
= Φ[η(t),x(t)] + q(t).

In this article, we are concerned only with the systematic part of ME, hence, the stochastic

component, q(t), is neglected; the sequential filtering approaches based on KF, such as

the ensemble KF provide an implicit framework for the inclusion of the stochastic terms.

74



T+00 T+06 T+12 T+18 T+24 T+30
0

10

20

30

40

50

60

70

80

90

100

Ge
op

ot
en

tia
l h

eig
ht

 fie
ld 

RM
SE

 (m
2 /s2 )

Forecast
Strong Constraint VDA

(a)

T+00 T+06 T+12 T+18 T+24 T+30
0

10

20

30

40

50

60

Ge
op

ot
en

tia
l h

eig
ht

 fie
ld 

RM
SE

 (m
2 /s2 )

Forecast
Strong Constraint VDA

(b) 

T00 T+06 T+12 T+18 T+24 T+30
3

4

5

6

7

8

9

10

11

Ge
op

ot
en

tia
l h

eig
ht

 fie
ld 

RM
SE

 (m
2 /s2 )

Forecast
Strong Constraint VDA

(c) 

Figure 4.3: RMSE in the geopotential height fields for different advection schemes before
and after DA in strong constraint form (a) Unconstrained Van Leer (b), Constrained van
Leer (c), PPM schemes 75



Figure 4.4: Isolines of differences in geopotential height field between model forecast using
PPM scheme for advection and observations at T+30, forecast verification time (a), Using xb

(b), using initial condition obtained after strong constraint data assimilation
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Therefore the above differential equation simplifies to,

dη

dt
= Φ[η(t),x(t)]. (4.8)

For closure of the above IVP, we need to specify the initial value of η(t0) = η0, and the

nature of the mapping, Φ[.]; both of them being very important parameters. Uncertainty in

the initial value of ME (η0) is similar to uncertainty involved with the determination of initial

conditions for the model equations, solution to which was accomplished by minimization of

the cost functional given in Eq. (4.5). A similar approach is adopted for obtaining η0, via

minimization of a cost functional, which is similar to that in Eq. (4.5), and includes the

following extra term, Jη, First we describe the methodology used to calculate the initial

value of ME and then address the issue of different approaches for modeling the evolution

of ME, using different forms of Φ[.]. To obtain η0 the following weak constraint VDA cost

functional (J ) is minimized (note that it is similar to the cost functional in Eq. (4.5), but

includes an extra term, Jη),

J [x(t0), η(t0)] = J (x0, η0)

=
1

2
[x0 − xb]T B−1 [x0 − xb]︸ ︷︷ ︸

Jb

+
1

2

n∑
i=0

[H(x(ti))− yo(ti)]
T R−1 [H(x(ti))− yo(ti)],︸ ︷︷ ︸
Jo

+
1

2
[η0 − ηb]T Q−1 [η0 − ηb],︸ ︷︷ ︸

Jη

(4.9)

where Q is the model error covariance matrix (explained in appendix D). Just as the

background state, xb was used as an initial guess for x0, to minimize the strong constraint

VDA cost functional, we use ηb as an initial guess for η0 to minimize the above Jη in the

weak constraint VDA. Hence the above cost functional, J (x0, η0) is minimized subject to the

following equations as constraints,

x(t0) = x0; η(t0) = η0,

dx(t)

dt
= M[x(t)] + η(t);

dη

dt
= Φ[η(t),x(t)].

 (4.10)
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Introducing the following augmented Lagrangian functional, the above constrained mini-

mization problem becomes an unconstrained problem,

L(x, η,x∗, η∗) = J (x0, η0)

+

∫ tn

t0

〈x∗, {dx(t)

dt
−M[x(t)]− η(t)}〉 dt

+

∫ tn

t0

〈η∗, {dη

dt
− Φ[η(t),x(t)]}〉 dt, (4.11)

where x∗, η∗ are the Lagrange multiplier vectors corresponding to x, η respectively, in other

words, x∗ is the adjoint state corresponding to x and η∗ is the adjoint state of η, and 〈·, ·〉
denotes Euclidean inner product.

Using calculus of variations, the extrema of L are the solutions of the Euler-Lagrange

equations (the extrema of L are the same as the extrema of J (x0, η0)). Using the first order

optimality criteria, at the extrema of the Lagrangian, L, the following equations are satisfied,

∂L
∂x

= 0,
∂L
∂η

= 0, (4.12a)

∂L
∂x∗

= 0,
∂L
∂η∗

= 0. (4.12b)

Equations (4.12b) yield the equations describing the evolution of model state and ME,

dx(t)

dt
= M[x(t)]− η(t),

dη

dt
= Φ[η(t),x(t)].

respectively. Equations (4.12a) yield the following adjoint equations which describe the

evolution of the adjoint variables x∗, η∗,

x∗(tn) = 0, η∗(tn) = 0, (4.13a)

−dx∗(t)

dt
= [

∂M
∂x

]Tx∗ + [
∂Φ

∂x
]T η∗ + δ(t− ti)

n∑
i=0

[
∂H

∂x
]T R−1 [H(x(ti))− yo(ti)], (4.13b)

−dη∗(t)

dt
= [

∂Φ

∂η
]T η∗ + x∗. (4.13c)

Note that the evolution of x∗ and η∗ is coupled via the Φ[.] operator. Also the gradient of

the cost functional, J (x0, η0), with respect to the model state, x0 and ME state, η0 is given
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by,

∇x0J = ∇x0Jb + ∇x0Jo = B−1[x0 − xb] + x∗(t0), (4.14a)

∇η0J = ∇η0Jη + ∇η0Jo = Q−1[η0 − ηb] + η∗(t0), (4.14b)

as usual, backward integration of the adjoint models (4.13b) and (4.13c) from time tn → t0,

provides us the values of initial adjoint states: x∗(t0) and η∗(t0). Therefore the gradient in

weak constraint VDAis given by (∇x0J ,∇η0J )T . Comparing this to the gradient in strong

constraint VDA, which was only∇x0J , the size of the optimization problem is doubled. Recall

that T was set equal to I, hence the size of the initial ME control vector, η∗(t0) is equal to

size of the initial model state control vector, x0.

In strong constraint version of VDA we used a square-root formulation for the background

error covariance matrix, B, and transformed the space in which minimization was performed,

such that there was no need for calculating B−1. In appendix D we provide a similar

treatment which involves both B and the ME covariance matrix, Q, thereby circumventing

the need to specify B−1 and Q−1.

Now we address possible approaches to model the evolution of ME, using different forms

of the mapping, Φ[η(t),x(t)], which maps the space of state variables, x and the space of ME,

η, on-to η only. As noted above, this mapping couples the evolution of the adjoint variables

corresponding to the model states and ME variables, and it also increases the complexity

involved in the backward integration of the adjoint models, Eq. (4.13). To the best of our

knowledge, the issue of model errors in solutions of inverse problems using high resolution

advection schemes has not been addressed as yet, hence to begin with, in this article we

assume that ∂Φ
∂x

= 0, i.e, Φ[.] maps ME on-to itself. This assumption significantly simplifies

the adjoint model equations, since the evolution of x∗ is unchanged, and we can concentrate

only the evolution of ME and its corresponding adjoint state.

The strong constraint VDA can significantly reduce the component of forecast errors due

to inaccurate specification of model initial conditions. Therefore through weak constraint

VDA, we aspire to further reduce the forecasting errors by reduction of errors such as those

arising from discretization. We have used a range of schemes which have different dissipative

and dispersive errors, the unconstrained van Leer being most dissipative among all three

of the advection schemes and the PPM scheme, which is well known to be least dissipative
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and dispersive. Hence we expect that efficient modeling of the evolution of ME should

provide further improvement of results obtained using the unconstrained van Leer scheme,

for example. Note that other causes of model error such as those in limited area models due

to mis-specification of boundary conditions can be tackled by following the approach used in

ZZ05. Based on our experience about the evolution of forecast errors, we can say that they

exhibit a trend of anywhere between linear to exponential growth. Hence we desire to model

η(t) to be an increasing function of time. Since the ME evolution is given by the following

equation,

η(t0) = η0,
dη

dt
= Φ[η(t)],

the rate of increase of η(t) in time is given by the particular form of Φ[η]. If Φ[η] < 0,∀η then

the ME decreases in time, if Φ[η] = 0,∀η then ME is constant in time, and if Φ[η] > 0,∀η
then ME increases in time. We considered all these possibilities and investigated the following

three forms of Φ,

1. Decreasing ME, Φ[η] = −βη,

2. Constant ME, Φ[η] = 0,

3. Exponentially increasing ME, Φ[η] = γη,

where β and γ are constants, and in our numerical results we specified β = 0.2/∆t, and

γ = 0.01/∆t. We used the same termination criteria as in Eq.(4.7),

‖(∇J )k‖ ≤ EPS ·MAX[1, (‖xk(t0)‖+ ‖ηk(t0)‖)],

where the gradient now includes the model error information, ∇J = (∇x0J ,∇η0J )T , and

ηk(t0) is the optimal initial state vector at the kth. minimization iteration. Note that since

the size of the gradient vector has doubled, the size of the Hessian of the cost functional is

increased by four times. Due to the monotonicity criteria, increasing the size of the Hessian

increases its condition number, which implies that a larger number of minimization iterations

would have to be performed to achieve the same termination criteria (the same value of

EPS was used in both strong and weak VDA for comparison sake). In fig. 4.5 we provide

a comparison of the RMSE in geopotential height field after data assimilation using above

forms of the ME for the unconstrained, constrained van Leer and PPM schemes (though
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not shown, the RMSE in wind fields was significantly reduced using different forms of ME).

Clearly inclusion of ME provides further reduction in forecast errors. As we said earlier,

the model errors usually increase in time, therefore as expected the results obtained using

the decreasing form of ME are inferior to those obtained with the other two forms. This

conclusion is further substantiated by the fact that since the PPM scheme is least dissipative

(compared to the van Leer schemes) the decreasing form of ME yields the same results as

given by the strong constraint VDA. Though the constant form of ME is very simple, the

results obtained using the van Leer schemes indicate that it yields results comparable to

the increasing form. Noteworthy is the fact that in the case of PPM scheme, the increasing

form is the best. To indicate that the inclusion of ME positively impacts DA via efficient

preconditioning and weak constraint VDA, we provide a plot of Jo versus the number of cost

functional evaluations using the constant ME form and the unconstrained van Leer scheme

in fig. 4.6. Note the markedly improved fit of model states and observations using even the

simplest form of constant ME. Figures 4.7(a)- 4.9(a) show the differences in the geopotential

height field between model forecast and observation at forecast verification time, T+30 for

various forms of model error using the PPM advection scheme (though not shown, the

van Leer schemes yielded similar results). Note the improvement in forecast using the ME,

when compared to the strong constraint VDA (i.e., with no ME), fig. 4.4. In figures 4.7(b)-

4.9(b) we show isolines of different initial model error state corresponding to the geopotential

height field for the different forms of ME and PPM advection scheme. The decreasing form

of ME is very dispersed when compared to the localized nature of the other two forms. As

expected the obtained initial ME state for the constant and increasing forms with the PPM

scheme is even more localized than that obtained with the van Leer schemes, indicating the

lack of dissipative effect with the PPM scheme.
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Figure 4.5: RMSE in the geopotential height fields for different advection schemes with
different forms of model error (a) Unconstrained Van Leer (b), Constrained van Leer (c),
PPM schemes 82
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Figure 4.7: (a) Isolines of differences in geopotential height field between model forecast
using optimized initial conditions obtained after weak constraint VDA(decreasing in time
form of ME) and the PPM advection scheme, (b) initial model error state corresponding to
the geopotential height field
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Figure 4.8: (a) Isolines of differences in geopotential height field between model forecast
using optimized initial conditions obtained after weak constraint VDA(constant ME) and the
PPM advection scheme, (b) initial model error state corresponding to the geopotential height
field
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Figure 4.9: (a) Isolines of differences in geopotential height field between model forecast using
optimized initial conditions obtained after weak constraint VDA(increasing in time form of
ME) and the PPM advection scheme, (b) initial model error state corresponding to the
geopotential height field
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

Variational data assimilation methods provide us the necessary tools to optimally estimate

the state of the atmosphere and its evolution in space and time using all of the available

information. We considered the formulation of a few VDA methods, such as 3D-var, PSAS and

4D-Var, which is the state of the art VDA method that can be used to assimilate observations

realistically, as they occur in space and time. In this dissertation we have presented the

formulation of various high resolution TVD, FV (which use MUSCL slope limiters and

PPM) schemes. In chapter 3 we showed that a consistent change of just the advection

scheme yielded significant change in the DA experimental results; these results are novel in

the sense that so far the impact on VDA comparing the performance such advection schemes,

in particular the PPM was not studied. Two specific nonlinear model problems, namely

the viscous Burgers equation in one space dimension and the global SW equations model

in two space dimensions have been used for conducting numerical experiments, as a first

step towards addressing the same issues which will arise in the practical implementation of

higher dimensional (3-D) complex NWP models for DA (such as using the FV-GCM for 4D-Var

DA). In both cases that were studied, smooth solutions have been considered. Using the

recovered initial conditions for forecasting and the closeness of the recovered optimal initial

conditions to the unperturbed initial conditions as important criteria in DA, our preliminary

twin experiment results indicate that limiter 5 (constrained van Leer limiter) in 1-D and the

PPM in 2-D yield better results, when compared to all other schemes.

Motivated by the results obtained in chapter 3, we studied one of the approaches to

improve the results obtained from (classical or strong constraint) 4D-Var VDA, once again

using various high resolution advection schemes (such as unconstrained, constrained van Leer

and the PPM). In chapter 4 we started out by investigating different forecasting errors in
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a twin experiment framework. Two principal causes for forecast errors being the erroneous

specification of model initial conditions and modeling errors. Various strong constraint

VDA (which does not include model error) experimental results obtained using different

advection schemes indicate that a mere change in the advection scheme alone provides more

than 50% reduction in forecast RMSE. Next we studied in depth the nature of modeling errors

and suggested a decreasing, constant and increasing in time forms of ME. Implementation

of these forms in a weak constraint VDA framework yielded a further reduction in forecast

errors. If it is a-priori known (perhaps through forecasts or numerical analysis using 1-D

cases) that dissipative schemes were used for weak VDA, then even the simplest forms of ME,

such as a constant in time form provides significantly better results. For highly accurate

advection schemes such as the PPM scheme, the increasing form of ME turns out to be the

best (when tested in the framework of a twin experiment). As such, based on the results

obtained from our preliminary investigation of impact of various forms of ME in the context

of weak VDA, the increasing form of model error is a good candidate for further research on

this topic. To sum up, three different forms of ME using high resolution advection schemes in

the presence of non-linear advection terms were studied in both strong and weak constraint

VDA framework.

A discussion of related topics of future research is provided in what follows. For the

sake of simplicity in the implementation of weak VDA, we selected forms of ME which

were independent of the model state, i.e, Φ[η,x] = Φ[η]. However at the expense of extra

computational work and developmental challenges, one could consider the TLM to be Φ,

such a case was studied in KF framework by Dee and Da Silva (1998) [128]. Recall that we

used the first order optimality criteria to derive the adjoint equations which provided us the

means to obtain the gradient of the cost functional with respect to the control variables. But

if the TLM is used for modeling the evolution of ME, i.e, Φ = ∂M
∂x

then one also needs to

specify the action of [∂Φ
∂x

]T and [∂Φ
∂η

]T on η∗ (the adjoint state corresponding to model error

variables) which amounts to using second order information, see Le Dimet et al. (2002) [39].

The complexity of such a second order adjoint model certainly depends on the complexity

of the NWP model as well as the equation used for the evolution of ME. The second order

optimality criteria provide the necessary and sufficient conditions for extrema of the cost

functional, whereas first order criteria are only necessary but not sufficient. Also availability

of the Hessian (of the cost functional) information, via Hessian/vector product obtained from

88



the second order adjoint model, speeds up the minimization process, since implementation

of the Newton methods is now possible.

Another topic of further research addressing improvement of the models used for modeling

the evolution of ME can be derived by using the additive property in both weak and strong

constraint versions of VDA (see Li and Navon 2001[41]). We can separate the observations

into a few subsets and perform VDA for each subset (see Jarvinnen et al. 1996[156]). Same

can be done with the model error, provided errors are uncorrelated in time, allowing model

error to adjust within a smaller time window. Hence, this could be beneficial for better

estimation of model errors. This is referred to as the property of consistent optimality by

Li and Navon (2001).

If the the stochastic component of ME, q(t) is not negligible, then it is to be included

in the modeling of ME, thereby the evolution of ME becomes stochastic as well. Earlier we

modeled the evolution of ME as,

dη

dt
= Φ[η(t),x(t)] + q(t).

The above ordinary differential equation should be rewritten as a stochastic differential

equation (SDE), such that η(t) = ηt is an Itô process given by,

dηt = Φ[ηt,xt]dt + dqt, (5.1)

and is a solution of the following integral equation,

ηt = η0 +

∫ tn

t0

Φ[ηs,xs]ds +

∫ tn

t0

dqs, (5.2)

where we assumed that x(t) is deterministic, η0 is the initial value of the model error term,

and [t0, tn] is the time window of data assimilation. The simplest possible model for the

stochastic term qt, is the Brownian motion, Bt, which has continuous paths. Whereas the

white Gaussian noise process Wt (integral of white noise process results in Brownian motion)

does not have continuous paths and has been used in various research work thus-far for data

assimilation, variational and sequential. The problem of optimally controlling the stochastic

model error would require formulation of optimal control within the SDE framework which

will be addressed in future research.

Our current research focus is on further investigation of validity of the above findings for

a higher dimensional system with real observations. Due to the fact that higher dimensional
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systems significantly stretch the limits of the available computational resources, various

methods for model reduction, such as those using properly orthogonal decomposition have

been suggested [157]. The application of such model reduction techniques to VDA is presently

being conducted by the author (in collaboration with Drs. I. M. Navon and D. N. Daescu).
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APPENDIX A

A SIMPLE FLOWCHART ILLUSTRATING THE

DATA ASSIMILATION CYCLE IMPLEMENTED AT

WEATHER FORECASTING CENTERS

Gathered observations
in (+/ -) 6 hours: yo (ti ) Background field or

first guess: xb

Data Assimilation using the observations 
                and background field

Forecast using the 
numerical model

6- hour forecast
Operational Forecast

Optimal initial conditions: x* ,
and other optimal model parameters

Figure A.1: An illustration of the variational data assimilation cycle, which is periodically
carried out at all the major weather forecasting centers to generate operational forecasts.
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APPENDIX B

A SEGMENT OF TANGENT LINEAR AND

ADJOINT MODEL CODES, WHEN HIGH ORDER

ADVECTION SCHEMES ARE INVOLVED IN

NONLINEAR MODEL

In this appendix, we illustrate the differentiation of functions which require special care, such

as the ABS, SIGN, DIM, MIN, MAX functions etc. Following is an example which shows a

section from the forward code to obtain

phi_local_min = MIN(phi_old(i-1),phi_old(i),phi_old(i+1))

is rewritten as:

IF(phi_old(i-1) .LE. phi_old(i))THEN

IF(phi_old(i-1) .LE. phi_old(i+1))THEN

phi_local_min = phi_old(i-1)

ELSE

phi_local_min = phi_old(i+1)

END IF

ELSE IF(phi_old(i) .LE. phi_old(i+1))THEN

phi_local_min = phi_old(i)

ELSE

phi_local_min = phi_old(i+1)

END IF

The linearization of the above segment is give by,
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if (phi_old(i-1) .le. phi_old(i)) then

if (phi_old(i-1) .le. phi_old(i+1)) then

g_phi_local_min = g_phi_old(i-1)

phi_local_min = phi_old(i-1)

else

g_phi_local_min = g_phi_old(i+1)

phi_local_min = phi_old(i+1)

endif

else if (phi_old(i) .le. phi_old(i+1)) then

g_phi_local_min = g_phi_old(i)

phi_local_min = phi_old(i)

else

g_phi_local_min = g_phi_old(i+1)

phi_local_min = phi_old(i+1)

endif

the corresponding adjoint statements are as following,

if (phi_old(i-1) .le. phi_old(i)) then

if (phi_old(i-1) .le. phi_old(i+1)) then

adphi_old(i-1) = adphi_old(i-1)+adphi_local_min

adphi_local_min = 0.d0

else

adphi_old(i+1) = adphi_old(i+1)+adphi_local_min

adphi_local_min = 0.d0

endif

else if (phi_old(i) .le. phi_old(i+1)) then

adphi_old(i) = adphi_old(i)+adphi_local_min

adphi_local_min = 0.d0

else

adphi_old(i+1) = adphi_old(i+1)+adphi_local_min

adphi_local_min = 0.d0

endif
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It should be noted that in order to compute the adjoint variables in the backward

direction, we require forward states to be available (as evident from the above piece of

adjoint code) in memory or recompute them, see research on checkpointing [158, 159] for

discussion on the trade-off between storing in memory and recomputation.
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APPENDIX C

DESCRIPTION OF THE BACKGROUND ERROR

COVARIANCE OPERATOR

Following Eq. (4.5) the strong constraint VDA cost functional is given by,

J = Jb + Jo.

A static-in-time B is constructed in the grid point space as an operator, which is based on the

formulation provided by Weaver and Courtier (2001)[154]; Derber and Bouttier (1999)[152].

Let δx = x(t0) − xb, and define a transformation, v = B−1/2 δx, which implies that

δx = B1/2v. Where the B1/2 is taken to be any square-root matrix, such that B = B1/2 BT/2;

BT/2 denotes the transpose of B1/2. Therefore the background cost functional can be

rewritten as,

Jb =
1

2
δxT B−1 δx =

1

2
δxT (B1/2 BT/2)

−1
δx =

1

2
vT v.

Hence the contribution to the gradient of the cost functional, J from the background cost

functional is equal to ∇v Jb = v, and to the Hessian of the cost functional, ∇2
v Jb = I. At

the beginning of the minimization, v = δx = 0, such that the initial guess for x(t0) is xb. This

transformation of variables preconditions the minimization problem for faster convergence

of the minimization algorithm. An ideal preconditioning is obtained if the Hessian matrix is

an identity matrix. A good approximation to this is to ensure that the Hessian of Jb is equal

to I, which is indeed the case here, since the minimization is performed in the v space. To

summarize,

J = Jb + Jo =
1

2
[x(t0)− xb]

T
B−1[x(t0)− xb] + Jo =

1

2
vT v + Jo,

where δx = x(t0)− xb, and v = B−1/2 δx, which implies δx = B1/2v. Therefore gradient of
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the cost functional with respect to v is given by,

∇v J = v +∇v Jo = v + BT/2∇x0 Jo.

Thus every minimization iteration requires application of B1/2 to obtain the analysis

increment δx from v and BT/2 to get the gradient ∇v Jo from ∇x0 Jo (which is computed by

a single integration of the adjoint model backward in time). As evident, we do not require

inverse of B in the above formulation.

The model variables (h,u,v) are partitioned into balanced and unbalanced components.

The so-called balancing operator, Kb acts on the unbalanced components of the model

variables and in-turn, Kb = K’b + I. Following Vidard et al. (2004)[144], K’b is formulated

using the linear balance equations, based on geostrophic balance (written in spherical

coordinates) and hydrostatic hypothesis.

Geostrophic balance:

u = − 1

ρ f
[
1

a

∂p

∂θ
],

v =
1

ρ f
[

1

a cos θ

∂p

∂λ
].

Hydrostatic hypothesis: p = ρ g h.

Which implies,

u = − g

f
[
1

a

∂h

∂θ
],

v =
g

f
[

1

a cos θ

∂h

∂λ
].

Therefore

Kb = K’b + I =

 I 0 0
− g

a f
∂
∂θ

I 0
g

a f cos θ
∂
∂λ

0 I


which is a lower triangular matrix, since our control vector is of the form (h, u, v)T .

Remark: At the North and South poles, one sided differences have been used for

computing the above derivative with respect to the latitude and at the equator, where

θ = π/2, we have used the average values of the derivative (with respect to the longitude)

from the two neighboring latitude circles, above and below the equator.
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Using the balance operator, we can write B = Kb Bu KT
b , where Bu is a block diagonal

error covariance matrix for the unbalanced component of the variables (see [154]), which

implies that the cross-covariances between the unbalanced variables is taken to be negligible.

Thus Bu = Σb CΣb, where Σb is a block-diagonal matrix of the background-error variances

in the grid point space, such that the diagonal entries represent error variances at every grid

point (in this work, we prescribed Σb = [2000 I, 100 I, 100 I]).

C is a symmetric matrix of background-error correlations for the unbalanced component

of the variables. Assuming that C is block-diagonal, which is a valid assumption, since

Bu has already been assumed to be block-diagonal, we obtain the square-root factorization

C = C1/2 CT/2.

Thus the square-root factorization of the background error covariance can be written as,

B = Kb Bu KT
b = Kb (Σb CΣb)KT

b = Kb (Σb C1/2 CT/2Σb)KT
b (C.1)

= (Kb Σb C1/2) (CT/2Σb KT
b )

= B1/2 BT/2.

Notice that the above formulation ensures that B is symmetric and positive definite,

both of these properties are usually required to be satisfied by any preconditioning matrix.

The analysis increment is given by δx = B1/2v = Kb Σb C1/2v. Since C is block-diagonal,

the operation C1/2 v can be split into individual operators C1/2
α vα, that act independently

on different components of the variable v, such as vα. For each variable, the univariate

operator can be factorized into Cα = C1/2
α CT/2

α . The procedure suggested by Weaver and

Courtier (2001) [154] has been implemented to model the univariate correlation operator, has

been implemented to model the univariate correlation operator, Cα as an isotropic diffusion

operator, assuming Gaussianity with a decorrelation length equal to 500 km.

We considered height field which was comprised of a single Dirac delta pulse located at

equator and longitude 180o, and prescribed no wind field, the action of B on such a field

is shown in Fig. C.1 (a). We see the effect of the correlation operator on the Dirac pulse

and also on the wind field obtained under geostrophic balance assumption (Fig. C.1 (b)),

which is parallel to the isobars of the pressure. Since there is a high pressure at the center,

the direction of the wind is clockwise in the Northern hemisphere and anti-clockwise in

the Southern hemisphere; at the equator due to the balancing of the pressure gradient and

Coriolis forces, the wind blows straight.
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Figure C.1: Result obtained by operating with B on a single Dirac delta pulse in the height
field (a), isolines of the height field (b), geostrophic wind plotted along with the isolines of
the height field.

98



APPENDIX D

SQUARE-ROOT TRANSFORMATION USED FOR

B AND Q

We have extended the procedure described in the previous Appendix A to include model

error control vector, thereby we achieve all the preconditioning properties for the mini-

mization process we discussed earlier (this procedure has also been described by Vidard et.

al. 2004 [144]). This approach circumvents the need to specify inverses of the background and

model error covariance matrices via a transformation which is similar to the one described

earlier for the strong constraint VDA which included only Jb and Jo in the cost functional.

Let

z =

[
x
η

]
,

such that

δz =

[
x0 − xb

η0 − ηb

]
.

Recall that the sum of background and model error cost functionals (Jb and Jη, respectively)

is given by,

Jb + Jη =
1

2
[x0 − xb]T B−1 [x0 − xb] + [η0 − ηb]T Q−1 [η0 − ηb]

=
1

2
δzT

[
B−1 0
0 Q−1

]
δz (D.1)

As in appendix A, let B1/2 and Q1/2 be any square-root matrices such that B =

B1/2BT/2,Q = Q1/2QT/2, and let
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w =

[
B−1/2 0

0 Q−1/2

]
δz

⇒ δz =

[
B1/2 0

0 Q1/2

]
w. (D.2)

The above transformation from (x, η) → w is similar to the previously described transfor-

mation: x → v, which involved B1/2 only. Using the above equations (D.1) and (D.2),

Jb + Jη =
1

2
wTw,

hence the entire cost functional,

J = Jb + Jη + Jo

=
1

2
wTw + Jo, (D.3)

and the gradient of the cost functional with respect to the transformed variable, w is given

by

∇w J = w +∇w Jo

= w +

[
BT/2 0

0 QT/2

] (
∇x0 Jo

∇η0 Jo

)
. (D.4)

We have modeled Q as a block diagonal matrix,

Q =

 Qhh 0 0
0 Quu 0
0 0 Qvv

 ,

such that each of the blocks is an univariate Gaussian correlation operator and has a square-

root decomposition given by,

Qαα = ΣqCαΣq = ΣqCα
1/2Cα

T/2Σq = (ΣqCα
1/2) (ΣqCα

1/2)
T

= Q1/2
αα QT/2

αα ,

where α = h,u,v; Σq is a diagonal matrix of variances (we prescribed Σq = 10−2Σb) and

Cα is an isotropic diffusion operator, construction of which was described in the previous

appendix. The most simplistic model error covariance matrix is a diagonal matrix, which
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implies that the analyzed model error increment at any specific grid point does have any

influence on the increments at the neighboring grid points. Alternatively a diffusion operator

provides such an increment in a localized region (given by the length scale of diffusion)

inexpensively. We have not used the balance operator, Kb in the above construction of Q.

The goestrophic balance and hydrostatic hypothesis which were used in the construction of

Kb are not required for Q since we do not have the same information about model error

covariances as we have for background error covariances; therefore usage of Kb in specification

of Q will only involve extra computational work.

At the beginning of minimization, the initial guess for x0 = xb and η0 = ηb, therefore

w = δz = 0. Every minimization iteration (carried out in w space) requires application of

B1/2,Q1/2 to obtain the analysis increment δz from w (Eq. (D.2)) and the adjoint operators,

BT/2,QT/2 to get the gradient ∇wJo from (∇x0Jo,∇η0Jo)
T (Eq. (D.4)).
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